Solar Photovoltaic Direct-Driven Air Conditioning System Performance in Iraq

2020 ◽  
Vol 38 (7A) ◽  
pp. 984-991
Author(s):  
Krar M. Kuder ◽  
Hashim A. Hussein ◽  
Ali H. Numan

The present research paper is on photovoltaic air conditioning system using the direct drive method. The experimental system setup arranged in Iraq at Al-taje site at longitude 44.34 and latitude 33.432 during the summer season inside a room. The proposed off-grid system consists of an array of photovoltaic, battery used to store power, PWM (pulse width modulation) charge controller, and DC air cooler. During the examination of the system, proven success of this new type(dc air conditioner ) of client urges Iraq warm conditions as an alternative type used instead of the prevailing types of air conditioners (AC air conditioner )in Iraq which consume large amounts of electrical energy and gets a cooling system for the room full working on solar energy.                                                                                                                

The work is aimed to replace conventional refrigerants used in air cooling system with Air Cycle Machine (ACM). Commercial Air-conditioners uses the refrigerants (Freon-Gas cycle) to remove the indoor air from the room. Freon leakage causes health problems such as respiratory ailments, heart attack and circulatory collapse. Air conditioning systems made based on desiccants. Refrigerant poisoning results in Throat swelling, loss of vision, blood vomiting, blood in the stool, severe abdominal pain and even death is possible. This can be overcome by using air cycle cooling process instead of Freon as a phase changing material. Air Cycle Machine is the system used in aircraft cabin pressurization and cooling system which does not uses refrigerants in the cooling process. The analytical work carried out in this paper is to study the air conditioning system using Air Cycle Machine and investigate the air flow inside the room by giving the various inlet temperatures and the inlet velocity of the Air-conditioner. ANSYS-FLUENT 16.0 is used for the analytical study. A cabin enclosure was modeled and analyzed for different inlet temperatures and velocities and out coming cool air spread nature for the given conditions have been observed. The qualitative results of this study clearly evident the usage of Air Cycle Machine (ACM) is prominently reduces the room temperature than the refrigerant system and spreads the cool air throughout the enclosed room makes a comfortable environment and this would not leads to any health hazards. Thus this study is certain to use Air Cycle Machine (ACM) for the cabin cooling system rather than refrigerants.


2018 ◽  
Author(s):  
Hamad H. Almutairi ◽  
Abdulrahman Almutairi ◽  
Jaber H. Almutairi

Buildings account for significant energy consumption worldwide particularly in regions where energy patterns influenced primarily by weather. Air conditioning system became an essential evaluation factor during building design and construction. The level of curiosity about air conditioning system efficiency in terms of energy usage is increasing quickly. In Kuwait; which is a hot climate country; air conditioners account for 70% of total electrical power. Electricity in Kuwait is produced entirely by the non-renewable energy resources. This work aims to assess the potential electrical savings that could be acquired by reducing building’s façade area towards East-West directional orientation in Kuwait. For this purpose, a detached building model with uniform geometry; was simulated by Energy Plus Thermal Simulation Engine through its interface with DesignBuilder software. Two cases were developed for the analysis; both have the same simulation inputs. The only difference was the orientation of the facades. The results show a reduction of about 900 kWh cooling annually if the largest facades were positioned towards north and south. The obtained saving in annual basis is attributed to about 420 kWh electrical power. Equivalent CO2 emissions associated with the saved electrical energy from power plants in Kuwait were estimated. The resulted savings are promising for early decision making for prospective buildings to be built in future.


2014 ◽  
Vol 699 ◽  
pp. 828-833 ◽  
Author(s):  
Sumeru ◽  
Markus ◽  
Farid Nasir Ani ◽  
Henry Nasution

Air conditioning system consumes approximately 50% of the total energy consumption of buildings. Split-type air conditioner is the most widely used in residential and commercial buildings. As a result, enhancement on the performance of the air conditioners will yield a significant energy savings. The use of ejector as an expansion device on the split-type air conditioners is one method to increase the system performance. Exergy analysis on a split-type air conditioner uses an ejector as an expansion device at room and outdoor temperatures of 24 °C and 34 °C, respectively, yielded the percentage of exergy reduction up to 40.6%. Also, the exergy losses on in the compressor had the highest impact on the performance improvement of the split-type air conditioner.


2018 ◽  
Vol 931 ◽  
pp. 920-925
Author(s):  
Zohrab Melikyan ◽  
Naira Egnatosyan ◽  
Siranush Egnatosyan

Centralized air conditioning systems are widely used in buildings at present. In these conditioners, the outside air gets required temperature, humidity, purity, and other features, necessary for creating comfort microclimate in inside areas of houses, and by the help of fans and air ducts the processed air moves to all rooms of a building. As a result, the creation and maintenance of comfort conditions in buildings become complicated and expensive activity. From this point of view, it is becoming more expedient to install local air conditioners in each room instead of single central one for the whole building. For this reason new local air conditioner is developed.


1996 ◽  
Vol 118 (1) ◽  
pp. 16-21 ◽  
Author(s):  
S. M. Aceves

This paper shows an analysis of the applicability of an adsorption system for electric vehicle (EV) air conditioning. Adsorption systems are designed and optimized to provide the required cooling for four combinations of vehicle characteristics and driving cycles. The resulting adsorption systems are compared with vapor compression air conditioners that can satisfy the cooling load. The objective function is the overall system weight, which includes the cooling system weight and the weight of the battery necessary to provide energy for air conditioner operation. The system with the minimum overall weight is considered to be the best. The results show the optimum values of all the variables, as well as temperatures and amounts adsorbed, for the adsorption and desorption processes. The results indicate that, for the conditions analyzed in this paper, vapor compression air conditioners are superior to adsorption systems, not only because they are lighter, but also because they have a higher COP and are more compact.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dan Zhou ◽  
Haoran Wang ◽  
Cheng Zhang ◽  
Ke Sun ◽  
Hanyun Wang ◽  
...  

Solar photovoltaic driven air conditioning (PVAC) system with electricity storage is proposed as a good solution to help shifting peak load and consuming solar energy. In this paper, a grid-connected PVAC system using the TRNSYS simulation model consisting of PV panels, traditional air conditioners (TAC), power conditioning units, inverters, and grid connection equipment is proposed to investigate the economic feasibility compared with the traditional air conditioner. In the PVAC system, the electricity, firstly generated by PV panels and then stored in battery, is consumed by a DC inverter air conditioner to maintain the temperature of the room and the surplus electricity is sold to the grid. A life cycle cost comparison between PVAC system, traditional air conditioning system, and decomposed PV and air conditioning systems of three typical application cases is conducted, in which the operation conditions are based on the present circumstances of China. The results show that, in comparison with conventional air conditioners, better economic benefits can be achieved when the peak load of the air conditioning system is over a certain value. Sensitivity analysis is conducted to evaluate the effects caused by variation of economic assumptions. At last, a new operation model is proposed to achieve more benefits for the system.


2018 ◽  
Vol 28 (49) ◽  
pp. 35-47
Author(s):  
Iván Vera-Romero

This paper presents the results of a case study carried out in a warehouse, and, in particular, the technical data obtained from field visits and a proposal for energy saving. The proposal entails incorporating a cogeneration system based on a motor generator (400 kWe ISO) to produce electrical energy, and an absorption cooling system (75 TR) that uses residual heat to generate air-conditioning. The absorption chiller consumed 54% less energy than the conventional air-conditioning system. Moreover, the produced energy can supply the plant’s total consumption, in addition to offering an excess of 57,312 kWh per month, which was reflected in the analysis of energy for sale to users with a high domestic consumption rate (DAC, for its Spanish acronym). The proposal’s total investment is USD 1,091,258, with a net monthly savings of USD 30,901, and an investment payback period of 2.9 years, which indicates the viability of this project according to its energy characteristics, notwithstanding that it is for a service provider company.


2013 ◽  
Vol 325-326 ◽  
pp. 1162-1165
Author(s):  
Jie Ming Ding ◽  
Zhen Zhong Li ◽  
Wei Bo Li ◽  
Pin He ◽  
Yang He

Combined wireless sensor network technology (WSN) and infrared control technology this paper designs an intelligent control system for split air conditioner (ACSS). The system adopts the SimpliciTI protocol and a highly integrated chipset, CC1110, as wireless sensing node, which it has high efficiency and lower power. The intelligent remote control unit of the system is capable of signal conversion, wireless communication as well as infrared control ability. In order to suit different air conditioners, the system establishes a control code library by learning a variety of air-conditioning infrared control signals. The control parameters optimized by the system server are transmitted to the intelligent terminal and then fires the infrared control signal to the air conditioner. Therefore, the system achieves the purpose of the remote intelligent controlling.


2015 ◽  
Vol 1125 ◽  
pp. 556-560 ◽  
Author(s):  
Sumeru ◽  
Triaji P. Pramudantoro ◽  
Farid Nasir Ani ◽  
Henry Nasution

Most air conditioners utilize vapor compression refrigeration cycle in their operation. In this cycle, the compressor is deployed to circulate the refrigerant from low to high pressures. Lubrication is an important aspect in the compressor to lubricate internal parts. Due to their remarkable properties in the thermo-physical and heat transfer capabilities, nanoparticles have prospect to be applied in the refrigeration and air conditioning system. The reliability and solubility nanoparticle of TiO2 in refrigeration systems have been investigated by several by several researchers. By introducing TiO2 nanoparticle in the lubricant, the friction coefficient and input power of the compressor can be decreased. An air conditioner with cooling capacity of 2.5 kW is utilized in the experiment. Five different concentrations of nanoparticle in the lubricant, viz.: 0.1, 0.2, 0.4, 0.5 and 0.6 gram of TiO2 in one liter of lubricant were mixed using a magnetic stirrer. After 10 days, TiO2 nanoparticles in the lubricant were observed its solubility. Furthermore, based on their solubility, TiO2 nanoparticle with concentration of 0.2 g/L was selected in the experiments. The results show that the air conditioner using R290 with TiO2 nanoparticle in the lubricants works normally and the input power of the air conditioner decreases about 3.1% and the cooling capacity and the COP increase about 5.1% and 8.4%, respectively, compared to the system without nanoparticle in the lubricant.


2021 ◽  
Vol 288 ◽  
pp. 01066
Author(s):  
Ahmed Al–Okbi ◽  
Yuri Vankov ◽  
Hasanen Mohammad Hussain

The process of operating an air conditioning system by hybrid energy that uses solar energy for purpose of saving electrical energy with improving the performance from modern and environmentally friendly systems. With high demand for air-conditioning systems in summer in hot regions, especially in Iraq due to high temperatures, the issue of using renewable energies becomes more attractive due to the continuous interruption of electrical energy. Air conditioners in Iraq consume more than half of the average electricity production. Therefore, saving energy leads to ensuring the reliability of electricity and reduces the consumption of fuel and gases that pollute the environment and negatively affect on the ozone layer. In the current research, the atmosphere of the city Baghdad was used to collect the solar thermal energy through a vacuum solar collector and combine it with a conventional air conditioner in order to reduce the electrical energy consumption on the compressor and increase the coefficient of performance. Several tests were conducted on the experimental device for comparing results with the conventional device and evaluating performance. The results showed that the performance with the vacuum solar collector became more efficient 8.97 instead of 4.27 than with the conventional system, and the energy consumption decreased by 52%.


Sign in / Sign up

Export Citation Format

Share Document