scholarly journals Slope Stability Analysis of Haditha Dam after Earthquake using Geo-Studio Software

2021 ◽  
Vol 39 (4A) ◽  
pp. 599-613
Author(s):  
Moammed K. Malik ◽  
Ibtisam R. Karim

The current study is designed to analyze theslope stability of Haditha damwhich is an earth-fill dam constructed on the Euphrates River in the middle-west of Iraq. Finite element modeling was used in the present study to analyze the combined seepage and post-earthquake slope stability of Haditha earth dam. The maximum water level of a steady seepage case was considered to evaluate seepage. - Three different water levels (maximum, normal, and minimum) were applied, and nine different equilibrium slope stability limits were used to analyze the upstream and downstream slopes of the dam with three horizontal maximum accelerations.The input data given to the software are the dam geometry and its material properties with the earthquake records in the year2019.The dam was investigated by considering the water in the reservoir to be at maximum, minimum and normal water levels in its actual design. It was concluded that the dam is on the safe side in terms of stability even though the change in the earthquake's conditions in Iraq.

2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Dyah Pratiwi Kusumastuti ◽  
Husna Alghoida

Abstract Dams have many benefits such as irrigation, flood prevention, power generation and even tourism, especially in areas where the dam is located. So that the benefits received can last a long time, in the planning, it must be analyzed for stability, seepage discharge that occurs and the safety of the piping. The piping hazard safety figures in this study were calculated using the Harza method for maximum water level conditions, normal water levels, fast receding and empty dams at sta 0 + 150, sta 0 + 200, sta 0 + 250 and sta 0 + 300. Based on the calculation results, it is found that the safety of piping hazards without filters with the grouting method do not meet the requirements safety factor, especially in conditions of maximum water level, normal water level and fast receding. In order for the safety of piping hazard in order to meet the requirements, a filter is applied under the dams. The filter is applied so that the piping hazard safety figure meets the requirements of all water level conditions and all station is 80 cm deep.   Keywords: safety factor, piping, Harza method, filter   ABSTRAK Bendungan memiliki banyak manfaat seperti irigasi, pencegah banjir, pembangkit listrik bahkan pariwisata khususnya pada wilayah dimana bendungan tersebut berada. Agar manfaat yang diterima dapat berlangsung lama maka dalam perencanaannya wajib dianalisis terhadap stabilitas, debit rembesan yang terjadi maupun keamanan dari piping. Angka keamanan bahaya piping pada penelitian ini dihitung dengan menggunakan metode Harza untuk kondisi muka air maksimum, muka air normal, surut cepat dan bendungan kosong di sta 0+150, sta 0+200, sta 0+250 serta sta 0+300. Berdasarkan hasil perhitungan didapatkan bahwa angka keamanan bahaya piping tanpa penggunaan filter dengan metode grouting tidak memenuhi persyaratan angka keamanan khususnya pada kondisi muka air maksimum, muka air normal dan surut cepat. Agar angka keamanan bahaya piping memenuhi persyaratan maka diaplikasikan filter dibawah tubuh bendungan. Filter yang diaplikasikan agar angka keamanan bahaya piping memenuhi persyaratan diseluruh kondisi muka air dan seluruh sta adalah dengan kedalaman 80 cm.   Kata kunci: angka keamanan, piping, metode Harza, filter Abstract Dams have many benefits such as irrigation, flood prevention, power generation and even tourism, especially in areas where the dam is located. So that the benefits received can last a long time, in the planning, it must be analyzed for stability, seepage discharge that occurs and the safety of the piping. The piping hazard safety figures in this study were calculated using the Harza method for maximum water level conditions, normal water levels, fast receding and empty dams at sta 0 + 150, sta 0 + 200, sta 0 + 250 and sta 0 + 300. Based on the calculation results, it is found that the safety of piping hazards without filters with the grouting method do not meet the requirements safety factor, especially in conditions of maximum water level, normal water level and fast receding. In order for the safety of piping hazard in order to meet the requirements, a filter is applied under the dams. The filter is applied so that the piping hazard safety figure meets the requirements of all water level conditions and all station is 80 cm deep.   Keywords: safety factor, piping, Harza method, filter   ABSTRAK Bendungan memiliki banyak manfaat seperti irigasi, pencegah banjir, pembangkit listrik bahkan pariwisata khususnya pada wilayah dimana bendungan tersebut berada. Agar manfaat yang diterima dapat berlangsung lama maka dalam perencanaannya wajib dianalisis terhadap stabilitas, debit rembesan yang terjadi maupun keamanan dari piping. Angka keamanan bahaya piping pada penelitian ini dihitung dengan menggunakan metode Harza untuk kondisi muka air maksimum, muka air normal, surut cepat dan bendungan kosong di sta 0+150, sta 0+200, sta 0+250 serta sta 0+300. Berdasarkan hasil perhitungan didapatkan bahwa angka keamanan bahaya piping tanpa penggunaan filter dengan metode grouting tidak memenuhi persyaratan angka keamanan khususnya pada kondisi muka air maksimum, muka air normal dan surut cepat. Agar angka keamanan bahaya piping memenuhi persyaratan maka diaplikasikan filter dibawah tubuh bendungan. Filter yang diaplikasikan agar angka keamanan bahaya piping memenuhi persyaratan diseluruh kondisi muka air dan seluruh sta adalah dengan kedalaman 80 cm.   Kata kunci: angka keamanan, piping, metode Harza, filter


2019 ◽  
Vol 27 (1) ◽  
pp. 344-353
Author(s):  
Abdul-Hassan K. Al-Shukur ◽  
Ranya Badea’ Mahmoud

One of the most common type of embankment dam failure is the dam-break due to overtopping. In this study, the finite elements method has been used to analyze seepage and limit equilibrium method to study stability of the body of an earthfill dam during the flood condition. For this purpose, the software Geostudio 2012 is used through its subprograms SEEP/W and SLOPE/W. Al-Adhaim dam in Iraq has been chosen to analysis the 5 days of flood. It was found that the water flux of seepage during the flood reaches about 8.772*10-5. m3/sec when the water level 146.5 m at 2nd day. Seepage through the embankment at maximum water level increased by 55.1 % from maximum water level. It was concluded that the factor of safety against sliding in downstream side decrease with increasing water level and vice versa. It was also concluded that the deposits are getting more critical stability during the conditions of flood when the factor of safety value reaches 1.219 at 2nd day.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 17
Author(s):  
Adnan Jayed Zedan ◽  
Mariwan Ridha Faris ◽  
Ahmed Amer Abdulsattar

Aiming in this research was to have a clear view about the behavior of Khasa-Chai Dam during the draw down action taking into consideration the newly built of this dam which was filling during the time of this article, the upstream slope was investigated by taking drawdown of the water from the reservoir. This dam is consists of the zoned embankment with a total length of (2.36 km) with an upstream slope (1v:3h) and downstream slope (1v:2h). Slope stability was investigated during the drawdown of the water from the reservoir by considering the water in the reservoir to be at maximum water level and by taking two cases during the rapid and slow drawdown. SLOPE/W which is a sub program from Geo-Slope software was used in association with SEEP/W software to find the factor of safety of the upstream slip surface during the drawdown conditions. It was noticed from the drawdown conditions that the phreatic line falls almost at the same position for both cases. Also for both cases the factor of safety of the upstream slip surface falls above the value of (1.0) and that is mean the upstream slope is in a safe condition when the water drawdown. The exit gradient and the rate of flow at the downstream face decrease with time as the water in the reservoir drawdown which means the factor of safety against boiling increases with time.  


2018 ◽  
Vol 147 ◽  
pp. 07001
Author(s):  
Najib ◽  
Agus Setyawan ◽  
Dwiyanto Joko Suprapto

Kedung Uling earthfill dam locates at Wonogiri Regency, Central Java, Indonesia. The dam encountered sliding and settlement at the embankment wall. To minimize sliding and settlement and to optimize the dam, both field investigation and laboratory tests have been proceeded for slope stability analysis and remedial embankment wall. Soil and rock investigation around the dam, which is followed by 10 core drillings, have been conducted. Laboratory tests such as direct shear and index properties have also been carried on. The results were further used for dam slope stability model using slide 6.0 and were used to analyzed factor of safety (FS) of Kedunguling dam. 10 conditions of dam were simulated and strengthening body of dam with grouting was designed. The results showed two conditions, which are condition of maximum water level with and without earthquake at downstream, were unsatisfy Indonesia National Standard (SNI) for building and infrastructure. These conditions can be managed by using grouting for increasing stabilization of embankment wall. By setting up grouting, factor of safety increases and meet the SNI standard requirement.


2017 ◽  
Vol 21 (5) ◽  
pp. 2497-2507 ◽  
Author(s):  
Eleni Maria Michailidi ◽  
Baldassare Bacchi

Abstract. In recent years, copula multivariate functions were used to model, probabilistically, the most important variables of flood events: discharge peak, flood volume and duration. However, in most of the cases, the sampling uncertainty, from which small-sized samples suffer, is neglected. In this paper, considering a real reservoir controlled by a dam as a case study, we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume–water depth relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework, allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both cases (single-site and multi-site with historical information scenarios), and Monte Carlo confidence intervals for the maximum water level are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment, without providing confidence intervals, deceiving.


2021 ◽  
Author(s):  
Amulya Chevuturi ◽  
Nicholas P. Klingaman ◽  
Steven J. Woolnough ◽  
Conrado M. Rudorff ◽  
Caio A. S. Coelho ◽  
...  

<p>Variations in water levels of the Negro River, that flows through the Port of Manaus, can cause considerable regional environmental and socio-economic losses. It is therefore critical to advance predictions for water levels, especially flood levels, to provide more effective and earlier warnings to safeguard lives and livelihoods. Variations in water levels in free-flowing river systems, like the Negro follow large-scale precipitation anomalies, which offers an opportunity to predict maximum water levels using observed antecedent rainfall. This study aims to improve the performance and extend the lead time of statistical forecasts for annual maximum water level of the Negro River at Manaus, relative to operational forecasts. Multiple linear regression methods are applied to develop forecast models, that can be issued in March, February and January, with the best possible combinations potential predictors: observed antecedent catchment rainfall and water levels, large-scale modes of climate variability and the linear trend in water levels. Our statistical models gain one month of lead time against existing models, but are only moderately better than existing models at similar lead time. Using European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal reforecast data with our statistical models, further gains an additional month of lead time of skilful performance. Our models lose performance at longer lead times, as expected. Our forecast models can issue skilful operational forecasts in March or earlier and have been successfully tested for operational forecast of 2020. This method can be applied to develop statistical models for annual maximum water level over other free-flowing rivers in the Amazon basin with intact catchments and historical water level record.</p>


2020 ◽  
Vol 148 ◽  
pp. 03002
Author(s):  
Lindung Zalbuin Mase

Within last 10 years, high intensity of rainfall had triggered the increase of water level during floods along Sub-watershed of Muara Bangkahulu River, Bengkulu, Indonesia. The high rainfall intensity was caused by extreme weather change. This study was focused on a segment of Muara Bangkahulu Sub-watershed called Semarang Segment. This segment is one of socio-economy centres in Bengkulu City. This study was initiated by performing the environmental investigation and collecting the rainfall intensity data in the study area. The site investigation data and soil tests were also performed to obtain the soil properties along sloping ground of sub-watershed. The analysis to obtain the maximum flood discharge as well as the maximum water level within 10 years was conducted. Furthermore, the slope stability analysis using both finite element and limit equilibrium methods was performed. In general, the results of this study could be a recommendation to stakeholders to consider the future impact in the study area. The results of this study could also bring a recommendation for the slope protection in the study area.


2016 ◽  
Vol 24 (2) ◽  
pp. 18-31 ◽  
Author(s):  
Sándor András Boldogh ◽  
Tamás Visnyovszky ◽  
Zsolt Szegedi ◽  
Béla Habarics ◽  
Róbert Horváth ◽  
...  

Abstract The Corncrake is a threatened umbrella species for wet meadows, which mostly depends on managed grasslands. Therefore, effective conservation requires bird-friendly land management schemes and subsidies. Although the most important populations in Hungary usually breed in protected areas, some of these are regularly flooded, which forces Corncrakes to find breeding sites elsewhere. Such movements from protected/subsidised areas to suboptimal sites have risks for Corncrake populations and their conservation. Here, we describe a large-scale dynamic system of interlinked populations based on data from 4194 Corncrake territories found at four different sites (Aggtelek, Bodrogzug, Szatmár-Bereg and Zemplén regions) across eight years between 1997 and 2006 in NE Hungary (c. 1500 km2). The results showed that the total population fluctuated between 407 and 631 pairs and that the populations were more-or-less stable in the first four years (1997–2000). However, extended floods caused the disappearance of the species from the Bodrogzug region in 2005–2006, while in the other sites, the number of territories increased five-fold (Zemplén), three-fold (Aggtelek) and two-fold (Szatmár-Bereg). The correlation between the number of territories and maximum water level of river Tisza in April-May was negative in the Bodrogzug site and positive in the three other sites, indicating that interlinkages of the populations were associated with water levels. Our data thus support the hypothesis that many of the birds driven out by inundation of floodplain meadows moved to other sites in NE Hungary in flood years. These results suggest that even large, centrally located populations of Corncrake can be greatly exposed to risks of flooding and that it is highly important to maintain suitable alternative breeding sites for the species. The High Natural Value Areas programme may allow administrative and funding support to provide or extend protection and/or subsidies to maintain this large-scale dynamic system. To this end, the area managed in bird-friendly ways and subsidised under agri-environmental schemes was extended by 35,000 hectares in NE Hungary in 2009.


2018 ◽  
Vol 934 (4) ◽  
pp. 46-52
Author(s):  
A.S. Bruskova ◽  
T.I. Levitskaya ◽  
D.M. Haydukova

Flooding is a dangerous phenomenon, causing emergency situations and causing material damage, capable of damaging health, and even death of people. To reduce the risk and economic damage from flooding, it is necessary to forecast flooding areas. An effective method of forecasting emergency situations due to flooding is the method of remote sensing of the Earth with integration into geoinformation systems. With the help of satellite imagery, a model of flooding was determined based on the example of Tavda, the Sverdlovsk Region. Space images are loaded into the geoinformation system and on their basis a series of thematic layers is created, which contains information about the zones of possible flooding at given water level marks. The determination of the area of flooding is based on the calculation of the availability of maximum water levels at hydrological stations. According to the calculated security data, for each hydrological post, flood zones are constructed by interpolation between pre-calculated flood zones of standard security. The results of the work can be used by the Main Directorate of the Ministry for Emergency Situations of Russia for the Sverdlovsk Region.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

The design code Eurocode 7 relies on semi-probabilistic calculation procedures, through utilization of the soil parameters obtained by in situ and laboratory tests, or by the means of transformation models. To reach a prescribed safety margin, the inherent soil parameter variability is accounted for through the application of partial factors to either soil parameters directly or to the resistance. However, considering several sources of geotechnical uncertainty, including the inherent soil variability, measurement error and transformation uncertainty, full probabilistic analyses should be implemented to directly consider the site-specific variability. This paper presents the procedure of developing fragility curves for levee slope stability and piping as failure mechanisms that lead to larger breaches, where a direct influence of the flood event intensity on the probability of failure is calculated. A range of fragility curve sets is presented, considering the variability of levee material properties and varying durations of the flood event, thus providing crucial insight into the vulnerability of the levee exposed to rising water levels. The procedure is applied to the River Drava levee, a site which has shown a continuous trend of increased water levels in recent years.


Sign in / Sign up

Export Citation Format

Share Document