DATA DECOMPOSITION AND ANALYSIS FOR A PHYSICALLY-VIABLE SIMULATION OF FIELDS DEVELOPMENT FOR OVERBURDEN PRESSURE AND HIGH TEMPERATURE CONDITIONS

2020 ◽  
pp. 5-12
Author(s):  
M.Yu. Akhapkin ◽  
◽  
I.V. Afanaskin ◽  
M.M. Glushakov ◽  
◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 540
Author(s):  
Yukyung Kim ◽  
Sanghyuck Lee ◽  
Hyeonseok Yoon

Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.


1998 ◽  
Vol 278-281 ◽  
pp. 612-617 ◽  
Author(s):  
Bogdan F. Palosz ◽  
Svetlana Stelmakh ◽  
Stanislaw Gierlotka ◽  
M. Aloszyna ◽  
Roman Pielaszek ◽  
...  

2004 ◽  
Vol 38 ◽  
pp. 309-313 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally

AbstractVapor-transfer theory is incorporated into a previous firn-densification model to investigate the effect of vapor-transfer processes on densification in firn within 10 m of the surface. The densification rate in the model is governed by the change of overburden pressure (determined by the accumulation rate), the firn temperature, and the temperature gradient. The time of exposure to temperature gradients at shallow depths is a critical factor determining the importance of vapor-transfer processes. In high-accumulation and high-temperature conditions such as for the Greenland ice sheet, the temperature gradient and vapor transfer are less important due to the shorter exposure times. The high summer temperatures dominate the rate of densification and annual variations in density. In low-accumulation and low-temperature conditions, such as for inland Antarctica, the vapor transfer driven by the temperature gradient has a stronger effect on the densification rate, and temperature-driven processes are less important. These factors determine both the rate of density increase with depth and the amplitudes of annual variations in density with depth.


2005 ◽  
Vol 71 (704) ◽  
pp. 1183-1189 ◽  
Author(s):  
Hiroyuki NISHIDA ◽  
Takuma OGAWA ◽  
Eiji WAKISAKA ◽  
Takeshi TACHIBANA

Sign in / Sign up

Export Citation Format

Share Document