Efficiency and prospects of increasing of liquefied natural gas use as a gas engine fuel for a trunk automobile transport and quarry motor vehicles

Author(s):  
A.A. Dmitriev ◽  
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5060
Author(s):  
Szymon Kuczyński ◽  
Mariusz Łaciak ◽  
Adam Szurlej ◽  
Tomasz Włodek

The one of main quality requirements of natural gas as an engine fuel is the methane number (MN). This parameter indicates the fuel’s capability to avoid knocking in the engine. A higher MN value indicates a better natural gas quality for gas engines. Natural gas with higher methane content tends to have higher MN value. This study presents analysis of deviation of liquefied natural gas (LNG) composition and its impact on LNG quality as an engine fuel. The analysis of higher hydrocarbons and nitrogen content impact on LNG parameters was considered for several samples of LNG compositions. Most engine manufacturers want to set a new, lower limit value for methane number at 80. This fact causes significant restrictions on the range of variability in the composition of liquefied natural gas. The goal of this study was to determine the combination of the limit content of individual components in liquefied natural gas to achieve the strict methane number criterion (MN > 80). To fulfill this criterion, the methane content in LNG would have to exceed 93.7%mol, and a significant part of the LNG available on the market does not meet these requirements. The analysis also indicated that the methane number cannot be the only qualitative criterion, as its variability depends strongly on the LNG composition. To determine the applicability of LNG as an engine fuel, the simultaneous application of the methane number and Wobbe index criteria was proposed.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052005
Author(s):  
M A Kovaleva ◽  
V G Shram ◽  
T N Vinichenko ◽  
E G Kravtsova ◽  
D G Slashchinin ◽  
...  

Abstract In this paper, the analysis of alternative fuels is carried out: electricity, hydrogen, biofuels (bioethanol, biodiesel, biogas), solar energy, compressed air, gas engine fuel (compressed natural gas, liquefied petroleum gas, liquefied natural gas). The advantages and disadvantages of their use are indicated according to the criteria of environmental safety, cost, and infrastructure development. It is revealed that at the moment, gas-engine fuel, in particular liquefied petroleum gas and compressed natural gas, is most suitable for the transfer of the fleet. The economic and environmental effect of the market expansion is associated with the high environmental friendliness of this type of fuel, low price, large natural reserves, the development of the petrochemical industry of the country, the reduction of financial costs for the repair and reconstruction of physically and morally outdated oil refining and liquid fuel production enterprises, promising technical and technological solutions to transport problems.


Author(s):  
Anatoliy Nickolaevich Sobolenko

The task of using natural gas-engine fuel in transport diesel engines (marine and automobile) is very actual. The trends of converting diesel engines to gas mode on ships of the port fleet and fishing vessels are becoming widespread. The importance to clarify the calculation methods of the working process for gas mode diesel engines is growing. Natural gas has been stated to comprise different gases - methane, ethane, propane, butane, carbon monoxide, etc., the percentage correlations of which being presented. There has been studied the method of calculating heat capacity of “pure” combustion products, i.e. under fuel combustion with excessive air coefficient α =1. The chemical reactions of oxidation elements of gas fuel components during its combustion determine the amount of kilomole of combustion products. To determine the heat capacity of the components of the combustion products - CO2, H2O and N2, the known tables of gases and water vapor properties were used. As a result of data processing, approximating linear and quadratic dependences were obtained. Нeat capacities are calculated in the linear formula of the specific heat of “pure” combustion products as the heat capacity of the gas mixture. As a result, a formula for determining the heat capacity of “clean” combustion products of gas fuel has been obtained: CVG = 25.03 + 0.0065· T . For determining the heat capacity of “clean” combustion products of gas fuel with 10% additive of ignition diesel fuel the formula has the following form CVGZH = 24.57 + 0.006· T . The dependences obtained are fairly accurate and recommended for using in the practice of converting diesel engines to gas-engine fuel, as well as when carrying out works and watercraft technology in building the ships and water transport.


2013 ◽  
Vol 2 (1) ◽  
pp. 36-40
Author(s):  
Tatjana Stanivuk ◽  
Tonći Tokić ◽  
Svetislav Šoškić

The paper discusses the influence of transportation costs on the delivery of liquefied natural gas (LNG) by sea. The research part of the project was carried out by using a dedicated LNG Moss type carrier with the capacity of 205,000 m3 and by taking into account the price of the propulsion engine fuel, LNG, as one of the most important factors of the final cost of LNG transportation. The fluctuation of the final costs also depends on the price of construction of a new vessel, the vessel’s design, sufficient number of the vessels required for transportation, and the amount of cargo to be shipped from a load port to the import terminal. The port of Murmansk, possibly one of Russia’s largest LNG load terminals, was used as port of departure, i.e. port of load. The final destinations, i.e. import terminals, included the ports of Zeebrugge, South Hook, Cove Point, Chiba and Fujian. It should be noticed that this study involved two sailing routes, the Suez Canal and the North East Passage, taking into consideration the harsh weather conditions the vessels might encounter during navigation.


Author(s):  
Seref Soylu

A two-zone thermodynamic model was developed for a spark ignition natural gas engine. The model was used to calculate instantaneous mass burning rate and thermodynamic state of burned and unburned zones of the combustion chamber content. Cylinder pressure data was collected at various engine operating conditions. Natural gas and natural gas–propane mixtures were used as engine fuel. From the burning rate analysis various combustion characteristics, such as flame initiation period (FIP) and flame propagation period (FPP) were calculated at various engine operating conditions. It was observed that both the FIP and FPP decrease with increasing equivalence ratio for lean mixtures. While the retarded timing decreases the FIP, the FPP has a tendency to increase. Addition of propane to natural gas reduces the FPP although the FIP is not affected. Unburned and burned gas temperatures are significantly raised with increase in equivalence ratio. However, ignition timing and propane fraction do not influence the temperatures as much as equivalence ratio does.


Author(s):  
Sridhar Sahoo ◽  
Srinibas Tripathy ◽  
Dhananjay Kumar Srivastava

Natural gas is widely used in sequentially port fuel injection engine to meet stringent emission regulation. Lean burn operation is one of the ways to improve spark-ignition engine fuel economy. The instability in the combustion process of the lean burn engine is one of the major challenges for engine research. In this study, the performance and combustion characteristics of a lean burn sequential injection compressed natural gas (CNG) engine were investigated numerically using computational fluid dynamics (CFD) modeling over a wide range of air/fuel equivalence ratio. A detailed chemical kinetic mechanism was used for natural gas combustion along with laminar flame speed model to capture lean burn operating condition within the combustion chamber. Combustion pressure, indicated mean effective pressure (IMEP), and heat release were analyzed for performance analysis, whereas flame development angle (CA 10), combustion duration, thermal efficiency were taken for combustion analysis. The results show that on increasing air/fuel equivalence ratio at a given spark timing, IMEP decreases as the lean burn mixture produces less amount of gross power output due to insufficient available energy. Moreover, lower burning velocity characteristic of natural gas extends the combustion duration, where a substantial amount of total energy released after top dead center. It is also seen that optimum spark timing (MBT) for maximum IMEP advances with an increase in air/fuel equivalence ratio due to late ignition timing under lean burn condition. CFD model successfully captures the effect of dilution to illustrate the considerations to design future combustion engine for spark ignited natural gas engine.


Author(s):  
Joshua Finneran ◽  
Colin P Garner ◽  
Francois Nadal

Liquefied natural gas is emerging as viable and potentially sustainable transportation fuel with intrinsic economic and environmental benefits. Liquefied natural gas possesses thermomechanical exergy amounting to ∼1 MJ kg-1 which is currently wasted on liquefied natural gas vehicles, while it could be used to produce useful work. The present investigation proposes an indirect means of obtaining useful work from liquefied natural gas through charge cooling and also demonstrates additional benefits in terms of NOx emissions and power density. A thermodynamic engine model was used to quantify the performance benefits of such a strategy for a homogeneous-charge, spark-ignited, stoichiometric natural gas engine. Four fuelling strategies were compared in terms of fuel consumption, mean effective pressure and NOx emissions. Compared to the conventional port-injected natural gas engine (where gaseous fuel is injected), it was found that directly injecting the liquid phase fuel into the cylinder near the start of the compression stroke resulted in approximately -8.9% brake specific fuel consumption, +18.5% brake mean effective pressure and -51% brake specific NOx depending on the operating point. Port-injection of the fuel in the liquid phase carried similar benefits, while direct injection of the fuel in the gaseous phase resulted in minor efficiency penalties (∼+1.3% brake specific fuel consumption). This work highlights the future potential of liquefied natural gas vehicles to achieve high specific power, high efficiency and ultra-low emissions (such as NOx) by tailoring the fuel system to fully exploit the cryogenic properties of the fuel.


Author(s):  
Alexey Muratov ◽  
Andrey Balakin ◽  
Denis Bardin ◽  
Valentina Tselikovskaya ◽  
Leyla Kurmanova

Objective: Studying the effect of diesel locomotives on the use of natural gas as motor fuel. Identification of the main advantages of using natural gas in internal combustion engines. Analysis of the effect of gas engine fuel on the performance of diesel locomotive power plants. Methods: Simulation of the working process of two engines: the first – on diesel fuel, the second – on the gas mixture. Adjustment of the mathematical model according to the real parameters of 1А-5Д49-2 diesel engine, taken during the rheostat tests of 2ТЭ116 diesel locomotive. Conducting calculation and experimental studies to assess the effect of the complete replacement of diesel fuel with natural gas on the operation of the locomotive power plant; accumulation of computational and experimental data, their systematization and statistical analysis. Theoretical dependences of the change in the specific effective fuel consumption of a diesel engine operating on natural gas through the gas cycle on the position of the driver’s controller, as well as dependences of the change in the effective performance of a diesel engine have been discussed. The calculated values are compared for the diesel engine operating on natural gas and the diesel engine operating on diesel fuel. Results: The calculated dependencies of the performance of Series 1А-5Д49-2 (16ЧН26/26) diesel engine of 2ТЭ116 diesel locomotive with the use of gas engine fuel have been obtained. The obtained data has been analyzed allowing carrying out theoretical estimation of efficiency of natural gas used as gas engine fuel throughout the entire operating range of 1А-5Д49-2 (16ЧН26/26) diesel engine of 2ТЭ116 diesel locomotive. A conclusion was confirmed about the expediency and efficiency of using natural gas in railway transport, particularly diesel locomotives. The influence of replacement of diesel fuel with natural gas on the performance indicators of diesel locomotives has been determined. Practical importance: The obtained dependencies will help in forecasting and in the theoretical evaluation of the feasibility of using natural gas as a motor fuel for locomotive power plants.


Sign in / Sign up

Export Citation Format

Share Document