scholarly journals Detection of inter turn fault in transformer windings by parameters of their transition processes

Author(s):  
R. G. Mustafin

The proposed method of detection the inter turn fault of transformer windings relates to the area of defectoscopy and allows detecting inter turn faults in a wide range of damaged (closed) turns. Power and instrument transformers with iron-core are widely used in power networks. As the insulation ages or is damaged, the wires between various transformer sections short circuits occur, which inevitably leads to a complete damage of the transformer. Short- circuited part of the transformer forms an additional winding, the outputs of which are short- circuited. The transition process of current increasing when DC voltage is connected to the transformer outputs occurs in diverse ways in undamaged (cut-off) winding section and in the damaged (short-circuited) section. The current growth rate in the undamaged section of the winding is determined by high magnetization inductance. The inductance of the short-circuited part of the winding is much less, so, the current growth rate in the short-circuited part is significantly greater than the current growth rate in the undamaged part of the winding. The article presents observations from computer models and real measurements of the substation auxiliary power transformer, which show the possibility of determining the presence of a turn fault in regards to the transition process parameters, the rate of current increase and decay in the transformer winding. The device aimed to find the inter turn faults in the transformer windings, working according to the proposed method will be quite simple and have a high sensitivity.

2013 ◽  
Vol 333-335 ◽  
pp. 22-26
Author(s):  
Xiao Fei Luo ◽  
Xian Xia ◽  
Kai Jun Wu

Aim at the electric power transformer with inductance is large, resistance is small, the inherent characteristics of the large time constant, a fast measurement scheme of power transformer winding DC resistance is proposed. The scheme adopts the increase the measurement circuit loop resistance mutation method, in which the circuit transition process from a time constant is forced to another time constant, to realize the rapid measurement of winding DC resistance in power transformer. Simulation results show the effectiveness of the scheme.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 288 ◽  
Author(s):  
Zhanlong Zhang ◽  
Yongye Wu ◽  
Ruixuan Zhang ◽  
Peiyu Jiang ◽  
Guohua Liu ◽  
...  

Most power transformer faults are caused by iron core and winding faults. At present, the method that is most widely used for transformer iron core and winding faults identification is the vibration analysis method. The vibration analysis method generally determines the degree of fault by analyzing the energy spectrum of the transformer vibration signal. However, the noise reduction step in this method is complicated and costly, and the effect of denoising needs to be further improved to make the fault identification results more accurate. In addition, it is difficult to perform an accurate determination of the early mild failure of the transformer due to the effect of noise on the results. This paper presents a novel mathematical statistics method based on the vibration signal to optimize the vibration analysis method for the short-circuit failure of the transformer winding. The proposed method was used for linear analysis of the transformer vibration signal with different degrees of short-circuit failure of the transformer winding. By comparing the slope value of the transformer vibration signal cumulative probability distribution curve and analyzing the energy spectrum of the signal, the degree of short-circuit failure of the transformer winding was identified quickly and accurately. This method also simplified the signal denoising process in transformer fault detection, improved the accuracy of fault detection, reduced the time of fault detection, and provided good predictability for early mild faults of the transformer, thereby reducing the hidden hazards of operating the power transformer. The proposed optimization procedure offers a new research idea in transformer fault identification.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Shahrooz Rahmati ◽  
William Doherty ◽  
Arman Amani Babadi ◽  
Muhamad Syamim Akmal Che Mansor ◽  
Nurhidayatullaili Muhd Julkapli ◽  
...  

The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1537
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


1979 ◽  
Vol 47 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
D. S. Simon ◽  
J. F. Murray ◽  
N. C. Staub

We evaluated the attenuation of the 122 keV gamma ray of cobalt-57 across the thorax of anesthetized dogs as a method for following the time course of lung water changes in acute pulmonary edema induced by either increased microvascular permeability or increased microvascular hydrostatic pressure. The gamma rays traversed the thorax centered on the seventh rib laterally where the lung mass in the beam path was greatest. Calibration measurements in isolated lung lobes demonstrated the high sensitivity and inherent accuracy of the method over a wide range of lung water contents. In control dogs reproducibility averaged +/-3%. Increased permeability edema led to large rapid increases in the transthoracic gamma ray attenuation (TGA), while increased pressure caused an immediate, modest increase in TGA (vascular congestion) followed by a slow further increase over 2 h. There was a fairly good correlation between the increase in extravascular lung water and the change in TGA. The method is simple, safe, and noninvasive and appears to be useful for following the time course of lung water accumulation in generalized lung edema in anesthetized animals.


2001 ◽  
Vol 19 (4) ◽  
pp. 579-595 ◽  
Author(s):  
D. MOSHER ◽  
B.V. WEBER ◽  
B. MOOSMAN ◽  
R.J. COMMISSO ◽  
P. COLEMAN ◽  
...  

High-sensitivity interferometry measurements of initial density distributions are reviewed for a wide range of gas-puff nozzles used in plasma radiation source (PRS) z-pinch experiments. Accurate gas distributions are required for determining experimental load parameters, modeling implosion dynamics, understanding the radiation properties of the stagnated pinch, and for predicting PRS performance in future experiments. For a number of these nozzles, a simple ballistic-gas-flow model (BFM) has been used to provide good physics-based analytic fits to the measured r, z density distributions. These BFM fits provide a convenient means to smoothly interpolate radial density distributions between discrete axial measurement locations for finer-zoned two-dimensional MHD calculations, and can be used to determine how changes in nozzle parameters and load geometry might alter implosion dynamics and radiation performance. These measurement and analysis techniques are demonstrated for a nested-shell nozzle used in Double Eagle and Saturn experiments. For this nozzle, the analysis suggests load modifications that may increase the K-shell yield.


2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document