scholarly journals PENELITIAN UJI KUAT TEKAN BETON DENGAN MEMANFAATKAN LIMBAH AMPAS TEBU DAN ZAT ADDITIF SIKACIM BONDING ADHESIVE

2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Agil Dwi Krisna ◽  
Sigit Winarto ◽  
Ahmad Ridwan

Concrete has the disadvantage of having a low tensile strength and convincing brittle beams with steel inscriptions to anticipate. In this study, the concrete mixture was given additional bagasse and additives of cycacim bonding. This addition was carried out to study and study the effect of bagasse on the compressive strength of normal k300 concrete by replacing bagasse by 0%, 5%, 10% and 15% in compressive loads. Compressive strength specimens in the form of cubes with a size of 15 cm x 15 cm x 15 cm. Testing is done after 28 days. Concrete with increased bagasse of 5% is better able to produce high compressive strength values than others. The addition of bagasse resulted in an average compressive strength of 5%, 229.64 kg / cm2, 10%, 190.35 kg / cm2, 15%, 160.87 kg / cm2.Beton mempunyai kelemahan yaitu mempunyai kuat tarik yang rendah dan bersifat getas sehingga beton diberi tulangan baja untuk mengantisipasinya. Pada penelitian ini, campuran beton diberi bahan tambahan ampas tebu dan zat additif sikacim bonding adhesive. Penambahan ini dilakukan untuk mempelajari dan mengetahui pengaruh ampas tebu terhadap kuat tekan pada beton mutu normal k300 dengan penambahan ampas tebu sebesar 0%, 5%, 10% dan 15% pada beban tekan. Benda uji kuat tekan berbentuk kubus dengan ukuran 15 cm x 15 cm x 15 cm. Pengujian dilakukan setelah 28 hari. Beton dengan penambahan ampas tebu 5% lebih mampu menghasilkan nilai kuat tekan tinggi dari pada yang lainya. Penambahan ampas tebu menghasilakan kuat tekan rata-rata yaitu 5%,229,64 kg/cm2, 10%,190,35 kg/cm2, 15%,160,87kg/cm2.

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Two Puji Guntur A ◽  
Yosef Cahyo ◽  
Sigit Winarto

ABSTRACTConcrete has a weakness that is having a low tensile strength and brittle so that the concrete is given steel reinforcement to anticipate it. In this study, the concrete mixture was added with dramix steel fiber. This addition was carried out to study and determine the effect of dramix steel fiber on compressive strength, flexural strength on normal quality concrete with the addition of 0%, 10%, 20% and 30% in compressive loads. Compressive strength specimens in the form of cylinders with a diameter of 15 cm and a height of 30 cm and bending strength test specimens in the form of blocks with a length of 60 cm, width of 15 cm and height of 15 cm. Testing is done after 28 days. Concrete with the addition of dramix steel fiber is 30% more capable of producing a higher compressive strength than the others. The addition of dramix steel fiber resulted in an average compressive strength of 0%, 29.07 MPa, 10%, 29.33 MPa, 20%, 29.40 MPa, 30%, 29.58 MPa. For the highest flexural strength of concrete in the 15/15/60 beam sample, that is in the concrete mixture and the addition of dramix steel fiber of 5.44 MPa, it is higher than the addition of reinforcement iron m8, which is 4.96 MPa.Keywords:Dramix Steel Fiber, compressive strength, concrete flexural strength, m8 wiremesh


2019 ◽  
Vol 2 (1) ◽  
pp. 16
Author(s):  
Mochamad Ahsin Ansori ◽  
Ahmad Ridwan ◽  
Yosef Cahyo

Concrete has a weakness that is having a low tensile strength and brittle so that the concrete is given steel reinforcement to anticipate it. This addition was carried out to study and determine the effect of sugarcane waste on compressive strength, flexural strength on normal quality concrete with the addition of 0%, 10%, 20% and 30% in compressive loads. Testing is done after 28 days. Concrete with the addition of 30% sugar cane is more capable of producing high flexural strength than the others. Addition of sugar cane drops resulted in optimum compressive strength of 10%, 16.75MPa, 20%, 16.55MPa, 30%, 16.40MPa. For the highest flexural strength of concrete in the 15/15/60 beam sample, the concrete mixture was added to 30% sugar cane by 5.00 MPa, higher than normal concrete 4.96 MPa.Beton mempunyai kelemahan yaitu mempunyai kuat tarik yang rendah dan bersifat getas (brittle) sehingga beton diberi tulangan baja untuk mengantisipasinya. Penambahan ini dilakukan untuk mempelajari dan mengetahui pengaruh limbah tetes tebu terhadap kuat tekan, kuat lentur pada beton mutu normal dengan penambahan 0%, 10%, 20% dan 30% pada beban tekan. Pengujian dilakukan setelah 28 hari. Beton dengan penambahan tetes tebu 30% lebih mampu menghasilkan nilai kuat lentur tinggi dari pada yang lainya. Penambahan limbah tetes tebu menghasilakan kuat tekan optimum yaitu,10%,16,75MPa, 20%,16,55MPa, 30%,16,40MPa. Untuk kuat lentur beton pada sampel balok 15/15/60 yang paling tinggi yaitu pada campuran beton penambahan tetes tebu 30% sebesar 5,00 MPa, lebih tinggi dari pada beton normal 4,96 MPa. 


2011 ◽  
Vol 335-336 ◽  
pp. 1454-1458
Author(s):  
Jing Xian Zhang ◽  
Bi Qin Chen ◽  
Dong Liang Jiang ◽  
Qing Ling Lin ◽  
Zhong Ming Chen ◽  
...  

In the present work, porous HA scaffolds with well controlled pore size, porosity and high compressive strength were prepared by aqueous gelcasting. PMMA beads with different size were used as the pore forming agent. The compositions, microstructure and properties of porous HA bioceramics were analyzed by XRD, SEM, Hg porosimetry etc. The mechanical properties were also tested. For scaffolds with the porosity as 70%, the average compressive strength was 11.9±1.7 MPa. Results showed that glecasting process can be used for the preparation of porous HA biomaterials with well controlled pore size and improved mechanical properties.


2019 ◽  
Vol 3 (2) ◽  
pp. 81-89
Author(s):  
Angga Pirman Firdaus ◽  
Jonbi

Indonesia ranks second in the world's largest plastic waste producer after China. Each year, Indonesia can contributeup to 187.2 million tons of plastic waste, while China reaches 262.9 million tons of plastic waste. Based on the data, one way to utilize plastic waste by using plastic waste as a mixture of concrete, where the plastic used is polypropylene (PP) plastic with different percentage of concrete mixture, the test includes compressive strength test and tensile concrete. The results of concrete compressive strength testing with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in aggregate aggregate mixture decreased by 5.15%, 6.89% and 13.53%. As for the result of concrete tensile strength test with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in crude aggregate mixture decreased 17,61%, 24,13% dan 23,24%.


2019 ◽  
Vol 9 (1) ◽  
pp. 15-22
Author(s):  
Era Rizky Hasanah ◽  
Agustin Gunawan ◽  
Yuzuar Afrizal

Concrete has a high compressive strength, but it is low to tensile strength. The pinang skin fiber and wood powderuse to increase the tensile strength. The purpose of this research is to know the effect of addition toward tensile strength and addition percentage variation in concrete that will get the highest tensile strength.The cylindrical specimens with size of 30 cm high and 15 cm diameter to 20 specimens, they are 4 sample of normal concrete and 16 sample of variation oncrete. The addition of pinang skin fiber and wood powder with variation of 0.25%, 0.5%, 0.75%, and 1% of the weight volume of the specimen with used 50% pinang skin fiber and 50% wood powder.The mixture of concrete uses water cement ratioof 0.5 and 60-100 mm slump.The test specimen is immersed for 26 days and the concrete tensile strength test conducted after the concrete at 28 days adding 7 days for drying.The result of this research shows that the variation concrete of 0.25% and 0.5% have increased of tensile strength than the normal concrete as 12.272% and 4.369%. Beside that for the variation concrete of 0.75% and 1% have decreased as 5.044% and 11.929%. The increase of tensile strength value of optimal concrete is found in variation 0.25% that is 12.272% from normal concrete.


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete


Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


2020 ◽  
Vol 13 (2) ◽  
pp. 137
Author(s):  
Dr. Akhmad Suryadi, BS., MT

The advancement era, the use of strapping band in the process of shipping goods was increases because of the more practical needs and stronger straps make the waste from strapping band was increases. With a large amount of waste by shredding it into smaller sizes it can be used as a substitute for fine aggregate in concrete mixture with synthetic fiber reinforced concrete concept at the Laboratory of Civil Engineering Politeknik Negeri Malang. The objectives of this research were to analyze the characteristics of concrete with the substitution of strapping band waste against fine aggregate in compressive strength and split tensile strength test. The research method including: aggregate test and strapping band test, the mix design of concrete mixture was using the reference SNI 03-2834-2000. The experiments sample for each variation of 0%, 5%, and 8% were performed with 24 cylinder specimens for compressive strength and 6 cylinder specimens for split tensile strength. The compressive strength on 28 days with 0%, 5%, and 8% variation resulted in 27.67 kg/cm2; 26.82 kg/cm2; 17.83 kg/cm2. The split tensile strength on 28 days with 0% 5%, and 8% variation resulted in 2.42 kg/cm2; 1.90 kg/cm2; 1.51 kg/cm2. The average weight of cylinder specimens with 0%, 5%, and 8% variation resulted in 12.62 kg; 12.04 kg; 11.61 kg. Substitution of strapping band waste decreases compressive strength, split tensile strength and average weight concrete. Key words : Strapping band waste, compressive strength, split tensile strength


2021 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Khoiriya Latifah ◽  
Joko Siswanto ◽  
Bambang Supriyadi ◽  
Carsoni C

Bamboo is an abundant material and easily available in Indonesia. In addition to having high compressive strength and tensile strength as well as ease of obtaining and low prices, bamboo is a consideration and focus in developing in the world of construction today. In this study, bamboo is used for soil stabilization, where bamboo is used in the form of fibre. This research focuses on the strength properties of various types of bamboo. The focus is to investigate the relationship between the maximum tensile strength of bamboo and the flexibility of bamboo in soil stabilization. This is very important, because bamboo fibers used for soil stabilization rely on their tensile strength rather than their compressive strength. Thus, the optimum tensile strength and flexibility of bamboo must be of particular concern. From the results of the study of the tensile strength of two types of bamboo, namely Apus Bamboo and Java Bamboo, the Apus Bamboo results were found to have a higher tensile strength of 225.57 mpa with maximum flexibility of 19.99 mm and 43.76 mpa for tensile strength of Javanese Bamboo with a level of flexibility of 10.26 mm.


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete.


Sign in / Sign up

Export Citation Format

Share Document