scholarly journals The Relation Tensile Strength And Flexibility Of Bamboo For Soil Stabilization

2021 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Khoiriya Latifah ◽  
Joko Siswanto ◽  
Bambang Supriyadi ◽  
Carsoni C

Bamboo is an abundant material and easily available in Indonesia. In addition to having high compressive strength and tensile strength as well as ease of obtaining and low prices, bamboo is a consideration and focus in developing in the world of construction today. In this study, bamboo is used for soil stabilization, where bamboo is used in the form of fibre. This research focuses on the strength properties of various types of bamboo. The focus is to investigate the relationship between the maximum tensile strength of bamboo and the flexibility of bamboo in soil stabilization. This is very important, because bamboo fibers used for soil stabilization rely on their tensile strength rather than their compressive strength. Thus, the optimum tensile strength and flexibility of bamboo must be of particular concern. From the results of the study of the tensile strength of two types of bamboo, namely Apus Bamboo and Java Bamboo, the Apus Bamboo results were found to have a higher tensile strength of 225.57 mpa with maximum flexibility of 19.99 mm and 43.76 mpa for tensile strength of Javanese Bamboo with a level of flexibility of 10.26 mm.

2021 ◽  
Vol 36 (1) ◽  
pp. 111-119
Author(s):  
Behzad Jafari Mohammadabadi ◽  
Kourosh Shahriar ◽  
Hossein Jalalifar ◽  
Kaveh Ahangari

Rocks are formed from particles and the interaction between those particles controls the behaviour of a rock’s mechanical properties. Since it is very important to conduct extensive studies about the relationship between the micro-parameters and macro-parameters of rock, this paper investigates the effects of some micro-parameters on strength properties and the behaviour of cracks in rock. This is carried out by using numerical simulation of an extensive series of Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) tests. The micro-parameters included the particles’ contact modulus, the contact stiff ness ratio, bond cohesion, bond tensile strength, the friction coefficient and the friction angle, and the mechanical properties of chromite rock have been considered as base values of the investigation. Based on the obtained results, it was found that the most important micro-parameters on the behaviour of rock in the compressive state are bond cohesion, bond tensile strength, and the friction coefficient. Also, the bond tensile strength showed the largest effect under tensile conditions. The micro-parameter of bond tensile strength increased the rock tensile strength (up to 5 times), minimized destructive cracks and increased the corresponding strain (almost 2.5 times) during critical stress.


Author(s):  
Carla Cavalcante Araújo ◽  
Gibson Rocha Meira

abstract: Periodic inspections in reinforced concrete structures are important to be carried out to assess their state of conservation. In this scenario, non-destructive tests can be a suitable option since destructive tests are invasive and may be difficult to be performed in some cases. Considering this option, correlations between non-destructive test parameters and the concrete properties to be analyzed are useful tools that make easier the structure inspection. In the present work, correlations between the compressive strength (fc) and splitting tensile strength (ft) and surface electrical resistivity (ρ) of concretes were studied. Brazilian concretes of six different mixtures were analyzed at five different ages and correlation curves between strength properties and surface electrical resistivity of concrete were obtained, which are represented by the general relationships fc= 14.18·ln(ρ) + 18.43 and ft = 0.69·ln(ρ) + 2.15 for compressive strength and splitting tensile strength, respectively. In addition, a general curve considering literature data and results from this work was proposed to represent the relationship between compressive strength and surface electrical resistivity - fc = 11.89·ln(ρ) + 18.90.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2010 ◽  
Vol 168-170 ◽  
pp. 709-715
Author(s):  
Dongsik Oh ◽  
Doheom Song ◽  
Seongseok Go

Hwangtoh (loess) has pozzolanic properties that mean it can be used as a cement admixture when activated at high temperatures, and that it can be used in combination with building materials such as fly ash or blast furnace slag. This study aimed to analyze the relationship between the compressive strength and the brick bond strength of various mortars containing hwangtoh, and also to find the optimum mixing conditions for the use of hwangtoh. It was found that the mortars’ strength properties are significantly influenced by the water/cement ratio W/C and the activated hwangtoh substitution ratio. We recommend the following materials and mixing conditions: W/C 60%, a cement substitution ratio of activated hwangtoh of 20 ~ 25%, and the addition of 10% blast furnace slag to improve the compressive strength of such mortars.


Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


Author(s):  
Prerna Priya ◽  
Ran Vijay Singh

Expansive Black cotton clay soils are widely distributed worldwide, and are a significant damage to infrastructure and buildigs.It is a common practice around the world to stabilize black cotton soil using fly ash to improve the strength of stabilized sub- base and sub grade soil. Soil stabilization is the improvement of strength or bearing capacity of soil by controlled compaction, proportioning or addition of suitable admixtures or stabilizers. The Black cotton soils are extremely hard when dry, but lose its strength fully when in wet condition. In monsoon they guzzle water and swell and in summer they shrink on evaporation of water from there. Because of its high Swelling and shrinkage characteristics the black cotton soils has been a challenge to the highway engineers.So in this research paper fly ash has been used to improve the various strength properties of natural black cotton soil.The objective of this research paper is to improve the engineering properties of black cotton soil by adding different percentage of fly ash by the weight of soil and make it suitable for construction. A series of standard Proctor tests (for calculation of MDD and OMC) and California Bearing Ratio (C.B.R) tests are conducted on both raw Black cotton soil and mixed soil with different percentages of fly ash (5%, 10%, 20%, 30%) by weight. A comparison between properties of raw black cotton soil, black cotton soil mixed with fly ash are performed .It is found that the properties of black cotton soil mixed with fly ash are suitably enhanced.


2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Agil Dwi Krisna ◽  
Sigit Winarto ◽  
Ahmad Ridwan

Concrete has the disadvantage of having a low tensile strength and convincing brittle beams with steel inscriptions to anticipate. In this study, the concrete mixture was given additional bagasse and additives of cycacim bonding. This addition was carried out to study and study the effect of bagasse on the compressive strength of normal k300 concrete by replacing bagasse by 0%, 5%, 10% and 15% in compressive loads. Compressive strength specimens in the form of cubes with a size of 15 cm x 15 cm x 15 cm. Testing is done after 28 days. Concrete with increased bagasse of 5% is better able to produce high compressive strength values than others. The addition of bagasse resulted in an average compressive strength of 5%, 229.64 kg / cm2, 10%, 190.35 kg / cm2, 15%, 160.87 kg / cm2.Beton mempunyai kelemahan yaitu mempunyai kuat tarik yang rendah dan bersifat getas sehingga beton diberi tulangan baja untuk mengantisipasinya. Pada penelitian ini, campuran beton diberi bahan tambahan ampas tebu dan zat additif sikacim bonding adhesive. Penambahan ini dilakukan untuk mempelajari dan mengetahui pengaruh ampas tebu terhadap kuat tekan pada beton mutu normal k300 dengan penambahan ampas tebu sebesar 0%, 5%, 10% dan 15% pada beban tekan. Benda uji kuat tekan berbentuk kubus dengan ukuran 15 cm x 15 cm x 15 cm. Pengujian dilakukan setelah 28 hari. Beton dengan penambahan ampas tebu 5% lebih mampu menghasilkan nilai kuat tekan tinggi dari pada yang lainya. Penambahan ampas tebu menghasilakan kuat tekan rata-rata yaitu 5%,229,64 kg/cm2, 10%,190,35 kg/cm2, 15%,160,87kg/cm2.


2019 ◽  
Vol 252 ◽  
pp. 08007 ◽  
Author(s):  
Jacek Góra ◽  
Danuta Barnat-Hunek ◽  
Paweł Wlaź ◽  
Monika Garbacz

The article presents the results of testing physical and strength properties of concrete with the addition of lightweight perlite in the amount of 10 and 20%. The additive was introduced by volume substituting a part of the sand. In addition, the effect of using siloxane admixtures and a vinyl acetate copolymer with different degree of dosing, as well as applied simultaneously, were analysed. The tests were carried out in the field of bulk density and proper density, determination of tightness and porosity, compressive strength and tensile strength after 28 days of maturation. In terms of durability of concrete, absorption and resistance of concretes to the freeze-up effects after 100 freezing and thawing cycles were tested. The results of the study were subjected to statistical analysis using the analysis of variance. The analysed factors of influence were the amount of perlite addition, as well as the type and amount of the added admixture


2017 ◽  
Vol 36 (3) ◽  
pp. 691-696
Author(s):  
EE Ikponmwosa ◽  
SO Ehikhuenmen

This paper reports the findings on an experimental investigation of the effect of partial replacement of coarse aggregate with ceramic waste on strength properties of concrete. Compressive strength tests were conducted using 150x150x150mm cube specimens, while tensile strength was investigated using 150x300mm cylinder specimens. Results of tests show that workability, density, compressive and flexural strength of concrete decreased with increase in ceramic waste content. The compressive strength at 90 days curing age for the control sample was 24.67 N/mm2. Compressive strength values at 90 days curing age for  25%, 50% and 75% replacement levels were 21.78 N/mm2, 19.85 N/mm2and 17.85 N/mm2 respectively. The decrease in density and strength was due to ceramic waste being lighter and more porous than normal coarse aggregate. Tensile strength of concrete with ceramic waste decline gradually from 8.39 N/mm2 to 6.13 N/mm2 for the control and 75% replacement samples respectively. This could be attributed to the water absorption capacity and external porcelain nature of the waste material. A production cost savings of 10.7% for 1:2:4 concrete mix was noted at 75% replacement level. This study concludes that ceramic waste could be used for both structural and non-structural works and recommends that beyond 75% replacement level, ceramic waste material should not be used in concrete structures where strength is the major consideration. http://dx.doi.org/10.4314/njt.v36i3.5


2011 ◽  
Vol 255-260 ◽  
pp. 4012-4016
Author(s):  
Jun Qing Ma ◽  
You Xi Wang

This paper studies relationship between soil-cement parameters and unconfined compressive strength. The research in tensile strength and deformation modulus of soil-cement is an important basis for soil-cement failure mechanism and intensity theory. They also impact cracks, deformation and durability of cement-soil structure. Shear strength and deformation of soil-cement is important to the destruction analysis and finite element calculations. Therefore it needs to study on tensile strength, shear strength and deformation modulus of soil-cement. Based on previous experiments, the relationship of tensile strength, shear strength, deformation modulus and unconfined compressive strength of soil-cement are quantitatively studied.


Sign in / Sign up

Export Citation Format

Share Document