scholarly journals Research on the Effect of Cooper Slag as a Fine Aggregate on the Properties of Concrete

Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.

2021 ◽  
Vol 895 ◽  
pp. 110-120
Author(s):  
Marwah Jaafar Kashkool ◽  
Wisam Abdulilah Almadi ◽  
Qusay A. Jabal ◽  
Layth Abdul Rasool Al Asadi ◽  
Jaber Kadhim Alghurabi

The study aims to improve some mechanical properties like compressive strength, tensile strength, modulus of elasticity and flexural strength of polymer modified concrete (PMC). This improving for PMC done by using waste iron filling as replacement from fine aggregate. waste iron filings and chips used in this research as percentages from sand ranged from 0 % to 40 % , the compressive strength of ordinary polymer concrete increase from 32.2 MPa to 41.81 MPa by 40% replacement of sand with waste iron filings and chips, tensile strength increased also from 2.83 MPa to 4.23 MPa by 40% replacement also. Flexural strength increased from 3.7 MPa for reference mix to about 7.1 MPa for mixes with 40% replacement, modulus of elasticity increased from 21087 MPa to 25233 MPa by using maximum percentage of waste iron filings. There is a slight increment in mechanical properties of polymer modified concrete after 30% ratio of waste iron filings and chips. Also research includes mixes modified with larger dosage of super plasticizer and less water/cement ratio to improve mechanical properties of PMC.


2021 ◽  
Vol 889 (1) ◽  
pp. 012070
Author(s):  
Amrinder Singh ◽  
Shalika Mehta

Abstract -As of late the ascent of substantial creation costs has consistently been a worry of substantial makers and customers. Using current waste to override concrete and some poIn ongoing years the ascent of substantial creation costs has consistently been a worry of substantial makers and buyers. Using present day waste to override concrete and some bit of all out can diminish its cost and environmental dirt of all out can decrease its cost and natural tainting. The mark to the purpose of this paper to audit the shot at powder made from marble dust close by the copper slag as an in part substitution to fine aggregate all out in geo-polymer concrete. Marble dust powder was used in mix in comprise copper slag as in part substitution to fine aggregate in level of 10%, 20%, 30%, 40% and 50%. The strength of geo-polymer concrete was tested after 7 & 28 days. Result shows that compressive strength is increased after the replacement of 60% of copper slag and marble dust powder to fine aggregate and also flexural strength and split tensile strength increases strength upto 60% and 80% after replacement. These discoveries of the examination express that powdered marble dust will be utilized as the conceivable substitution material to fine aggregate to give maximum strength copper slag geo-polymer concrete.


2018 ◽  
Vol 19 (2) ◽  
pp. 30-42
Author(s):  
Md. Nazmul Huda ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam ◽  
Walid A. Al-Kutti

The performance of high strength structural lightweight concrete (LWC) using the palm wastes, oil palm shell (OPS) as well as palm oil clinker (POC) has been reported. Existing literatures used either OPS or POC individually for production of LWC. Each concept has their own advantages-disadvantages. In this study, both OPS and POC have been put together as coarse aggregate on the way to see the improvement of mechanical properties of waste based LWC. To achieve this purpose, regular coarse aggregate has been fully replaced by OPS and POC in the concrete. This structural grade lightweight concrete is named as palm shell and clinker concrete (PSCC). Attempts have been made with the series of OPS and POC mixture aimed at identifying for better performance. The quantity of OPS and POC mix has been varied as 30%, 40%, 50%, 60% and 70%. Mechanical properties of PSCC like density, workability, compressive strength at different ages, flexural strength, splitting tensile strength as well as modulus of elasticity have been evaluated. It is revealed that the proposed PSCC has extensive potential in terms of high compressive strength and good material behavior to perform as a better LWC. The study could offer structural lightweight concrete of compressive strength up to 46 MPa that is 31% higher than the control mix. The usage of 50% OPS to 50% POC coarse aggregate by vol. in the concrete mix is found to be the optimum mix. Furthermore, simple correlations have been developed which can easily predict compressive strength, splitting tensile strength, flexural strength, modulus of elasticity and ultrasonic pulse velocity of lightweight concrete.


2015 ◽  
Vol 735 ◽  
pp. 122-127 ◽  
Author(s):  
Sikiru Oritola ◽  
Abd Latif Saleh ◽  
Abdul Rahman Mohd Sam

This paper reports preliminary findings on the properties of concrete produced using iron ore tailings obtained from ZCM Minerals SDN BHD located in Kotta Tingi, Johor, Malaysia. The Iron Ore Tailings (IOT’s) a waste product, with particle size range from (850μm - 75μm) obtained from Iron Ore Processing was utilized as fine aggregate to produce concrete. Based on British Standard (BS) guidelines, normal concrete mix was designed. Five types of concrete samples (C0, C1, C2, C3, and C4) were produced, with the percentage of tailings used to replace sand as fine aggregate ranging from 0 to 40[%]. The reference sample is C0 with no tailings and the four others, containing tailings at 10[%] intervals. The effect of iron ore tailings on the consistency of the fresh concrete were studied, as well as the density, compressive strength, flexural strength and splitting tensile strength, of the hardened concrete. The results of the consistency tests on concrete shows that the slump values ranges from 81 to 53[mm] from concrete sample C0 to C4 respectively, while the compacting factor values ranges from 0.92 to 0.89 respectively. The density of the produced concrete cube samples falls within the range 2350 to 2430[kg/m3]. The concrete sample C3 gave the highest compressive strength value of 43.70[N/mm2]. The concrete sample C3 also gave the highest flexural strength value of 4.79[N/mm2], while the The concrete sample C4 gave the highest splitting tensile strength value of 4.0[N/mm2] after curing period of 28[days].


Author(s):  
Sakthivel S ◽  
Velumani M ◽  
Yuvaraj K

Copper slag obtained during smelting to extract copper metal from the ore. The review of the characteristics of copper slag encourages several applications such as for manufacture of cement, in aggregates, Landfill, glass, tiles etc. Many researchers have already found it is possible to use copper slag as a concrete aggregate. The workability and strength characteristics were assessed through a series of test on different mix proportions at 10% incremental copper slag by weight replacement of sand. M35 grade concrete was used and the tests were conducted for various proportions of copper slag replacement with sand of 0%,10%,20%,30%,40%,50%,60%,70%,80%,90%,100% in concrete. Then the concrete where cured for 7, 28, 60 and 90 days. Then they were tested for compressive strength, split tensile strength, and flexural strength. Finally the results were compared with the concrete made with the Portland Pozzolana cement (PPC) and fine aggregate (sand).  


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


Author(s):  
Adda Hadj Mostefa ◽  
Merdaci Slimane

This work is carried out to investigate the performance of concrete reinforced with plastic fibers obtained locally (bottle waste as fiber). Bottle waste plastic was chosen because it is being thrown after single use and cause environmental problem. One way to recycle wasted bottles plastic is grinded into irregular fiber. Then, it was incorporate with the concrete and tests the performance of the concrete. The study was conducted using cylindrical and rectangular (cube) mold of concrete to investigate the performance of the concrete in term of mechanical properties. In this research, the mechanical properties that were measured are compressive strength, splitting tensile strength and flexural strength. The results revealed that the presence of plastic fiber in concrete will increase the concrete performance, as well as the concrete bond strength is improved and the cracks in the concrete decrease the use of fibers and reduce plastic waste.


2013 ◽  
Vol 357-360 ◽  
pp. 1062-1065 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This paper presents the results of an experimental study on the compressive strength, splitting tensile strength and modulus of elasticity characteristics of high performance concrete. These tests were carried out to evaluate the mechanical properties of HPC for up to 7 and 28 days. Mixtures were prepared with water to binder ratio of 0.40. Two mixtures were containing fly ash at 25%, silica fume at 5% cement replacement, respectively. Another mixture was contains blast furnace slag and fly ash at 25%. Three standard 100¥a200 cylinder specimens were prepared. HPC showed improvement in the compressive strength and splitting tensile strength when ordinary Portland cement was replaced with silica fume. Compare with specimens FA25 and BS25FA25, specimen SF5 showed much more modulus of elasticity. It shows that the use of the blast furnace slag of 25% and fly ash of 25% cement replacement has caused a small increase in compressive strength and splitting tensile strength and modulus of elasticity compared to the only use of fly ash of 25% at 28days. The results indicated that the use of blast furnace slag or silica fume provided the good performance compare to fly ash when the mechanical properties of the high performance concretes were taken into account.


Sign in / Sign up

Export Citation Format

Share Document