Meningkatkan Daya Dukung Tiang Pondasi Minipile Persegi Pada Gedung Kantor Ngasem Kabupaten Kediri Menggunakan Metode Mayerhoff

2021 ◽  
Vol 4 (2) ◽  
pp. 41
Author(s):  
Erwin Dwi Laksana ◽  
Edy Gardjito ◽  
Suwarno Suwarno ◽  
Faiz Muhammad Azhari ◽  
Imam Mustofa

The foundation is one part under the building that has a very important role. The choice of the type of foundation is something that needs to be considered. One type of foundation that is widely used is the minipile foundation. Minipile foundation itself is a type of foundation that is used if the load received from the superstructure is not too heavy and the hard soil type is at a depth of between 5-10m. The purpose of this study was to plan the bearing capacity of the minipile foundation pile in the PT. BPJE in Ngasem, Kediri Regency. The building is planned to be used as an office building. The planned sub-building includes foundation planning with a mini-square building with a cross-sectional dimension of 20x20. The calculations carried out include the calculation of the bearing capacity of the foundation using the Mayerhoff method, the calculation of the flexural factor and the calculation of reinforcement. The calculation results (sigma Vertical Ultimate) Vu = 114.78 tons. With bending factor tk = 286.95 kg /. The reinforcement in the pile cap for the x direction of tensile reinforcement = D16–170 and compression reinforcement = D16–250 while for tensile reinforcement in the y direction = D16 - 170 and compressive reinforcement = D10 - 250. Thus, the results of the planning can be used as a reference for the implementation of building construction. office of PT. BPJE in Ngasem, Kediri Regency.

2018 ◽  
Vol 195 ◽  
pp. 03005
Author(s):  
Ferry Fatnanta ◽  
Andarsin Ongko

Peat is a kind of soil with a very low bearing capacity and high compressibility. Generally, a building construction on peat is done by using a wooden pile foundation. However, the length of the wooden piles is sometimes limited and causes the friction strength between the soil and wooden piles to became suboptimal. In order to enhance the bearing capacity of the foundation, the cross-sectional area of the foundation needs to be enlarged. One of the solutions for this problem is through helical piles. There are two methods to determine the helical pile`s bearing capacity, i.e. individual bearing and cylindrical shear methods. In this paper, bearing capacity prediction was discussed. A foundation load test was thoroughly done by a constant rate of penetration. This test consisted of compression and tension tests. The result was analyzed by individual bearing and cylindrical shear methods and next compared to each other. The result of the analysis has shown that the individual bearing method was more suitable in predicting helical piles’ bearing capacity since it produced the lowest error rate, with a magnitude of 21,31%.


2020 ◽  
Vol 3 (1) ◽  
pp. 23
Author(s):  
Ahmada Khotibul Umam ◽  
Sigit Winarto ◽  
Ahmad Ridwan ◽  
Agata Iwan Candra

The foundation has an important role in the field of construction. The function of the foundation is to transport the building load to the subgrade, so the foundation must be planned with the right calculation so that the building is safe and stable. Pile foundation is one type of foundation used in building construction with heavy loads. In research, land investigations use SPT (Standard Penetration Test). The calculations include the carrying capacity of the soil, the loading of buildings, the dimensions and depth of the pile, and the stability of the controls. Calculation results obtained, loading on floors 1 to 3, totaling 4,463.5 Tons. The dimensions of the foundation are 0.6, with a cross-sectional area of 0.28274334 and a depth of 18 M. The need for strengthening the foundation is 600059.7 Kg. With bolt control stability 24,620 Tons / M2 > 1.5 Tons / M2 – >   Safe, shear  9,156 Tons / M2  > 0,156 Tons / M2 –  > Safe.Pondasi memiliki peranan penting dalam bidang konstruksi. Fungsi pondasi sendiri yaitu meneruskan beban bangunan ke tanah dibawah pondasi menjadikan pondasi harus direncanakan dan diperhitungkan dengan tepat agar bangunan yang didirikan aman dan stabil. Salah satu jenis pondasi yang banyak digunakan yaitu pondasi tiang pancang. Pondasi tiang pancang merupakan salah satu jenis pondasi dalam yang banyak digunakan pada konstruksi yang memiliki beban berat. Dalam penelitian, penyelidikan tanah menggunakan metode SPT (Standart Penetration Test). Perhitungan yang dilakukan meliputi perhitunagn daya dukung tanah, Pembebanan bangunan, dimensi dan kedalaman tiang pancang, serta stabilitas control. Hasil dari perhitungan didapat, pembebanan lantai 1 sampai 3 sebesar 4663,5 Ton. Dimensi pondasi sebesar 0,6 M dengan luas penampang 0,28274334 M dan kedalaman 18 M. Kebutuhan tulangan pondasi yaitu 600059,7 Kg. Dengan stabilitas kontrol terhadap guling 24,620 Ton / M2 > 1.5 Ton / M2 – >   Aman, Gaya terhadap geser 9,156 Ton / M2  > 0,156 Ton / M2 –  > Aman.


2013 ◽  
Vol 859 ◽  
pp. 270-273 ◽  
Author(s):  
Xiao Xiong Zha ◽  
Yang Zuo ◽  
Shi Yun Chen

Container, as a light steel structure, being increasingly used in building construction, containers used in construction has many advantages and applications. However, the current study mostly from the view of the architecture, as for the mechanical properties of the container building has not mentioned, that brings obstacles of the application and development of the container building. Based on the software package of HyperWorks and optimization design theory, the cross-sectional size of container building is taken as design variables, and then selected objective function and constraint functions. Finally, calculated by software, get the optimal cross-sectional dimension.


2020 ◽  
Vol 9 (1) ◽  
pp. 70-77
Author(s):  
Amanda Rachmad Pratama ◽  
Rida Respati ◽  
Norseta Ajie Saputra

Soil bearing capacity is the ability of the soil to support the foundation load acting on it. To produce an accurate bearing capacity, it is necessary to know the properties and characteristics of the soil. For this reason, a comparison of the carrying capacity of the soil is carried out based on the calculation of CPT / Sondir and SPT to be able to plan a safe and economical pile foundation. The purpose of this study was to determine the amount of soil bearing capacity of the deep foundation in the environment around the Ataqwa Mosque, Baringin Village, Palangkaraya City based on field tests, and based on laboratory tests, and to determine the value of the comparison between the Mayerhof Method and the Schmertmann-Nottingham Method. Based on the Sondir value, it is continued with the calculation of the carrying capacity of the soil, then the calculation results are analyzed and concluded. From the calculation of the value of the carrying capacity of the foundation pile implementation of point 1 (one), the highest value of 400 mm diameter piles in the Meyerhoff method is 75,319 kg, while the lowest bearing capacity value is also at 400 mm piles of 10,676 kg. For point 2 (two), the highest value is obtained at 400 mm diameter piles in the Shmertmann-Nottingham method of 65,853 kg, while the lowest bearing capacity value is also at 400 mm piles of 10,676 kg


2021 ◽  
Vol 4 (2) ◽  
pp. 129
Author(s):  
Lintang Ratnasari Satiti ◽  
Yosef Cahyo Setianto Poernomo ◽  
Sigit Winarto ◽  
Andri Dwi Cahyono

The foundation is an important part of the building structure because it functions as a support. The selection of this pile foundation has various considerations, namely the pile foundation can achieve the hardest soil bearing capacity, made with a manufacturing system, then the quality of the concrete can be guaranteed, the soil bearing capacity is not only obtained from the tip of the pile. Foundation planning needs to be well planned to support user safety and comfort. Pile foundation is one type of foundation chosen because it is more cost-effective and quality than other foundations. This study aims to plan the pile foundation for a new building at Baptist Hospital Kediri. The calculations carried out include calculating the load received by each column, the carrying capacity of a single pile permit, the dimensions and depth of the pile, as well as the required pile cap dimensions. Calculation of the pile foundation is carried out using the Mayerhoff method. The calculation results show that the load on the column area (K13) is 212.23.04 tons, the carrying capacity of the single pile permit (Qall) is 87509.33 kg and Quult is 218773.3 kg and the use of 4 piles on one pile with dimensions of 40 x 40 cm with a depth of 10.6 m, With these results can be used as a reference in the construction of a new building Baptist Hospital that is safe and able to withstand the load of the building.


Jurnal CIVILA ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 166
Author(s):  
Agata Iwan Candra ◽  
Anasrudin Yusuf ◽  
Amanda Rizky F

The foundation is a part of the building construction which is responsible for accepting and eradicating all the load from the building either live load or dead load from a land market building which is strong enough to support it . To determine the soil bearing capacity soil investigation needs to be done so that the building that are above the ground is not decreased (settlelment) is large enough, then the foundation must reach solid ground layer and the bearing capacity of the soil (bearing capacity) are permitted.   Strous foundation and bored pile used if the ground conditions in the bottom of the building does not have sufficient load bearing capacity to carry the load or if the hard soil that has a strong carrying capacity is located very deep from the ground surface. The purpose of this study is to calculate the carrying capacity of Strous Meyerhoff and Begemann on sondir results.


2020 ◽  
Vol 2 (2) ◽  
pp. 99-106
Author(s):  
Zulhady Zuhri ◽  
Istiatun Istiatun

ABSTRACTThe pile foundation is an sub-structure to load from the upper structure. Ultimate load carrying-capacity (qu) will be transfered into a hard soil layer by using a deep foundation system. To design the pile foundation, several methods are needed to obtain different bearing capacity values. This study determines the planned pile depth, pile dimensions and pile cap. The purpose of this final project is to plan the pile foundation for the Arandra Residance 2 tower construction project located in Cempaka Putih, Central Jakarta. The method used is the method of Meyerhof, U.S Army Corp, Tomlinson, α and λ. In addition, the calculation of reinforcement, immediate settlement and settlement of primary consolidation was also carried out. The results of the calculation of bearing capacity foundation are different values. The Meyerhof Qu method is 9846,786 kN, the U.S Army Corp method Qu = 11065.11 kN, the Tomlinson Qu method = 10409.68 kN, the method α = 9558.95 kN, and the method λ Qu = 10066.37 kN. Whereas according to Broms, the lateral bearing capacity is 10845 kN. In planning used reinforcement D25-270. Immediate settlement is 50.3 mm, primary consolidation settlement is 9.89 mm, and time rate of consolidation during 1.75 months. Keywords: Foundation, driven pile, bearing capacity, settlement, primary consolidation  ABSTRAKFondasi tiang merupakan fondasi yang menyalurkan beban struktur atas dan beban lainnya ke struktur lapisan tanah keras yang mempunyai daya dukung tinggi yang terletak jauh di dalam tanah. Untuk merencanakan fondasi tiang pancang diperlukan beberapa metode untuk mendapatkan nilai daya dukung yang berbeda. Studi ini menentukan kedalaman tiang pancang yang direncanakan, dimensi tiang pancang dan pilecap.  Tujuan dari tugas akhir ini adalah merencanakan pondasi tiang pancang untuk proyek pembangunan tower Arandra Residance 2 yang berlokasi di Cempaka Putih, Jakarta Pusat. Metode yang digunakan adalah metode Meyerhof, U.S Army Corp, Tomlinson, α dan λ. Daya dukung lateral menggunakan metode Broms. Selain itu juga dilakukan perhitungan penulangan, penurunan segera, dan penurunan konsolidasi primer. Hasil perhitungan daya dukung fondasi terdapat perbedaan nilai. Metode Meyeherhof Qu = 9846.786 kN, metode U.S Army Corp Qu = 11065.11 kN, metode Tomlinson Qu = 10409.68 kN, metode α = 9558.95 kN, dan metode λ Qu = 10066.37 kN. Sedangkan menurut broms daya dukung lateral sebesar 10845 kN. Pada perencanaan digunakan tulangan D25-270. Penurunan segera terjadi sebesar 50.3 mm, penurunan primer sebesar9.89 mm, dan kecepatan waktu penurunan konsolidasi selama 1.75 bulan. Kata kunci: Fondasi, tiang pancang, daya dukung, penurunan, dan konsolidasi primer


2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2014 ◽  
Vol 638-640 ◽  
pp. 1397-1401
Author(s):  
Kai Xiang ◽  
Guo Hui Wang ◽  
Yan Chong Pan

This paper presents a review of research progress in fire performance of concrete-filled steel tubular (CFST) columns. Experimental results of CFST columns in fire are reviewed with influence parameters, such as heights, cross-sectional dimension, section types, concrete types, concrete strengths, load ratio, load eccentricity, fire exposed sides and so on. Some conclusions of CFST columns under fire conditions are summarized. Deficiencies in the fire performance experiments of CFST columns are identified, which provide the focus for future research in the field.


Sign in / Sign up

Export Citation Format

Share Document