Meningkatkan Daya Dukung Pondasi Tiang Pancang Gedung Baru Rumah Sakit Baptis Kediri Menggunakan Metode Mayerhoff

2021 ◽  
Vol 4 (2) ◽  
pp. 129
Author(s):  
Lintang Ratnasari Satiti ◽  
Yosef Cahyo Setianto Poernomo ◽  
Sigit Winarto ◽  
Andri Dwi Cahyono

The foundation is an important part of the building structure because it functions as a support. The selection of this pile foundation has various considerations, namely the pile foundation can achieve the hardest soil bearing capacity, made with a manufacturing system, then the quality of the concrete can be guaranteed, the soil bearing capacity is not only obtained from the tip of the pile. Foundation planning needs to be well planned to support user safety and comfort. Pile foundation is one type of foundation chosen because it is more cost-effective and quality than other foundations. This study aims to plan the pile foundation for a new building at Baptist Hospital Kediri. The calculations carried out include calculating the load received by each column, the carrying capacity of a single pile permit, the dimensions and depth of the pile, as well as the required pile cap dimensions. Calculation of the pile foundation is carried out using the Mayerhoff method. The calculation results show that the load on the column area (K13) is 212.23.04 tons, the carrying capacity of the single pile permit (Qall) is 87509.33 kg and Quult is 218773.3 kg and the use of 4 piles on one pile with dimensions of 40 x 40 cm with a depth of 10.6 m, With these results can be used as a reference in the construction of a new building Baptist Hospital that is safe and able to withstand the load of the building.

Author(s):  
Nusa Setiani Triastuti ◽  
Indriasari Indriasari

<p><em>Pile foundation is one of the solutions of high-rise buildings not in the area of restrict area. When the pile foundation reached until the hard ground reaches, a small settlement is expected and  different  setlement  are  not occur. The objective: analyze the results of loading tests compared carryng capacity calculations, pile cap thick required secure.</em></p><p><em>The research method used in this research is the case study of pile foundation  twelve floors building in Batam island. The reaction on the pile is analyzed using software program of non-linear structure version 9.5 which is supported by primary data, namely loading test and secondary data of soil investigation and the largest column force taken on the pole 1.618,854 ton, Mx -7,936 ton meter, My -75,531 ton meter.</em></p><p><em>Carrying capacity analysis is based on friction and end bearing and calculated pole efficiency. The axial load of the plan is supported by 16 (sixteen) piles, based on the loading test (P) the ultimate pile foundation reaches 200% (two hundred percent) in the amount of 411.52 tons. </em><em>Single pile carrying capacity is 205.76 tons .Settlement in the loading test results 10mm is smaller than from the setlement in calculation results. The stress acting on the pile cap of 12.453 kg/cm<sup>2</sup> is smaller than the permit strees of 13 kg/cm<sup>2</sup>.</em></p>


2020 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Rizaludin Rizaludin ◽  
Sigit Winarto ◽  
Ahmad Ridwan

The foundation is a part of the structure that functions as a support for the building and distributes the burden on it (upper fabric) or the soil layer with a stable enough carrying capacity. In planning the foundation for a structure can use several types. The selection of the foundation to be used based on the weight of the building. The construction of the C story building seven-story University requires a strong foundation. The pile foundation was chosen because it was relatively fast, easy, and yielded hard soil at 5.6 m. In this calculation, three methods as a Trofimankove method and the Meyerhoff method and the General Method Method. Pile foundation planning has a planned load of Qu 231 Ton. The calculation of the three ways obtained more efficient results, namely the count with a Meyerhoff method equal to 82.21. The number of single piles that are close to one pile cap is four poles, so the calculation formula of the Pall piles group is 232.82 tons. Thus it can be concluded that Pmax <Pall 231 Ton <232.82 Ton, which means that it meets the requirements.Pondasi adalah bagian struktur yang berfungsi sebagai penopang bangunan dan menyalurkan beban diatasnya (upper structure) atau lapisan tanah yang memiliki daya dukung yang cukup kuat . Dalam merencanakan pondasi untuk suatu struktur dapat menggunakan beberapa macam tipe pondasi. Pemilihan pondasi berdasarkan fungsi bangunan atas yang akan dipikul oleh pondasi tersebut, berdasarkan beban dan beratnya bangunan atas kedalaman tanah dimana bangunan tersebut didirikan. Pembangunan gedung C berlantai 7 Universitas Kadiri memerlukan pondasi yang kuat. Pondasi tiang pancang dipilih karena pekerjaan relatif cepat, mudah dan hasil sondir tanah keras pada 5,6 m. Pada perhitungan ini digunakan tiga metode yaitu metode Trofimankove dan metode mayerhoff serta Metode cara Umum. Perencanaan pondasi tiang pancang memiliki beban rencana sebesar Qu 231 Ton. Dari perhitungan ketiga metode didapat hasil yang lebih efisien yaitu pada perhitungan dengaan metode mayerhoff yaitu sebesar 82,21. Jumlah tiang tunggal yang mendekati pada satu pile cap adalah 4 tiang, sehingga diperoleh dari rumus perhitungan Pall tiang kelompok 232,82 Ton. Dengan demikian dapat disimpulkan Pmaks < Pall 231 Ton < 232,82 Ton, yang artinya memenuhi syarat.


2020 ◽  
Vol 9 (1) ◽  
pp. 70-77
Author(s):  
Amanda Rachmad Pratama ◽  
Rida Respati ◽  
Norseta Ajie Saputra

Soil bearing capacity is the ability of the soil to support the foundation load acting on it. To produce an accurate bearing capacity, it is necessary to know the properties and characteristics of the soil. For this reason, a comparison of the carrying capacity of the soil is carried out based on the calculation of CPT / Sondir and SPT to be able to plan a safe and economical pile foundation. The purpose of this study was to determine the amount of soil bearing capacity of the deep foundation in the environment around the Ataqwa Mosque, Baringin Village, Palangkaraya City based on field tests, and based on laboratory tests, and to determine the value of the comparison between the Mayerhof Method and the Schmertmann-Nottingham Method. Based on the Sondir value, it is continued with the calculation of the carrying capacity of the soil, then the calculation results are analyzed and concluded. From the calculation of the value of the carrying capacity of the foundation pile implementation of point 1 (one), the highest value of 400 mm diameter piles in the Meyerhoff method is 75,319 kg, while the lowest bearing capacity value is also at 400 mm piles of 10,676 kg. For point 2 (two), the highest value is obtained at 400 mm diameter piles in the Shmertmann-Nottingham method of 65,853 kg, while the lowest bearing capacity value is also at 400 mm piles of 10,676 kg


2021 ◽  
pp. 1-11
Author(s):  
Jihan Melasari ◽  
Meri Sufina ◽  
Afdhal Yusra

Solid construction certainly has a strong foundation that sustain Minimizing the potential for a settlement and the destruction of the foundation is so important to be known. So we should be able to know exactly how large a bearing capacity of the foundation. The purpose of this thesis is to redesign the foundation witha bore pile foundation. So in terms of knowing the size of the bearing capacity of the foundation, ,we discusses how the value of the bearing capacity of the foundation analytically which in this case using mayerhoff method, the from data SPT will using reese & wright method and mayerhoff method. The value of bearing capacity that we seek to determine the strength of the foundation that suffer a load the which is located thereon. legislative officebuilding Dharmasraya using a pile foundation and design with bore pile foundation, At the point BH-1 the carrying capacity of the single pile foundation is greater than the load, the foundation is said to be safe, Q permits> the rated load is 2000,32 tons > 47,973 tons. At point BH-2 the bearing capacity of the pile foundation of the group is greater than the load, the foundation is said to be safe, Q permits > 2073,532 tons > 1218,989 tons. At point BH-1 the carrying capacity of single bore pile foundation is greater than load carrying, the foundation is said to be safe, Q permit> the mean load is 1230,249 tons > 47,973 tons. At BH-2 point thecarrying capacity of the bore pile foundation is larger than the load, the foundation is said to be safe, Q permits> the rated load is 1222,337 tons > 1218,989 tons. 


2020 ◽  
Vol 198 ◽  
pp. 02017
Author(s):  
Zhongju Feng ◽  
Shaofen Bai ◽  
Wu Min ◽  
Jingbin He ◽  
Zhouyi Huang ◽  
...  

In order to study the influence of steep slope-karst coupling on the vertical bearing characteristics of pile foundation, the orthogonal simulation tests of pile foundation under 4 different roof thickness and 5 different slope are carried out by using Marc finite element software, and the correction coefficient of vertical partial bearing capacity of pile foundation according to roof thickness and slope is put forward. The test results show that when the thickness of the roof is more than 3 times the pile diameter, the ultimate bearing capacity of the pile foundation tends to be stable, and the value is about 19% when the slope is 45°; the ultimate bearing capacity of the pile foundation decreases gradually with the increase of the slope, and the reduction reaches 29.83% when the slope is greater than 45°. According to the calculation results, the variation law of vertical partial bearing capacity of pile foundation is analyzed, and the calculation formula of standard value of vertical ultimate bearing capacity of pile foundation in steep slope karst area considering both roof thickness and slope is put forward, and the correction coefficients αi and β are put forward.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Yan ◽  
Gang Wang ◽  
Min Chen ◽  
Kefeng Yue ◽  
Qingning Li

In order to study the theory and application of the pile foundation underpinning technology, 3 local node models of underpinning structures with a similarity ratio of 1/1 were made and the progressive repeated static loading tests were conducted. The shear and antislip properties of the joint are studied, and the improved formula for calculating the shear capacity is proposed. The results show that a planting bar plays a major role in shear resistance, and the hoop rate can improve the shear capacity of the interface. The new formula for calculating the shear-bearing capacity is proposed, and the calculation results of the formula of shear-bearing capacity are in good agreement with the experiment results. It is completely feasible to use this formula to calculate the shear-bearing capacity of the pile foundation underpinning structure. During the test, the bearing capacity of the model is good, which proves the reliability of the underpinning technology is good, and it can provide experimental and theoretical basis for the underpinning of similar projects.


2011 ◽  
Vol 374-377 ◽  
pp. 1947-1952 ◽  
Author(s):  
Zhao Yun Xiao ◽  
Guo Xun Zhang ◽  
Wei Xu ◽  
Zhong Ming Xue

It is a complicated progress of interaction between pile and soil when pile is under both vertical load and horizontal load. This paper analyzes the variation of stress, strain, deformation and deflection of the pile body by finite element numerical simulation of single bored concrete pile under vertical load together with horizontal load. Based on the existing research results, conclusions could be that the vertical load can increase horizontal bearing capacity of the pile in sandy soils, but horizontal bearing capacity of the pile in clayey soils is more complicated. Hope that the simulation can provide some references for the design of pile foundation.


2011 ◽  
Vol 368-373 ◽  
pp. 2722-2730
Author(s):  
Quan Cao ◽  
Hong Chen ◽  
Fa Bo Chen

According to the characteristics of installation about the penetrometer of seismic piezocone penetration tests (SCPTu) and the pile, a theoretical relationship between ultimate bearing capacity of single pile, time-effect of shaft bearing capacity of single pile, excess pore water pressure around the pile during pile driven and the data measured from SCPTu is developed based on the cavity expanded theory, the Terzaghi one-dimensional consolidation theory and effective stress theory. The result of field test in KunShan and the calculated result which used the theoretical relationship mentioned above are compared. The results indicate that the analytical solutions agree well with the in-situ tests, which show that the application of seismic piezocone penetration tests have wide range in the pile foundation.


2019 ◽  
Vol 20 (2) ◽  
pp. 193-203
Author(s):  
Vladimir I. Golik ◽  
Yury V. Dmitrak ◽  
Oleg Z. Gabaraev ◽  
Yuri I. Razorenov

The relevance of the study is explained by the need to improve technological processes with the increasing complexity of the development of ore deposits with an increase in the depth of development, the use of powerful technology and an increase in stresses in arrays of ore-bearing rocks. The need to minimize the risk of mining requires the development and use of tools for managing an array. The purpose of this study is to systematize information about the theory and practice of using the residual bearing capacity of destroyed rocks from the practice of underground mining to improve the methods used to control the geomechanics of ore-bearing arrays. The complex of research includes analytical, full-scale, laboratory and theoretical methods that are used to identify the phenomenon of the use of the residual carrying capacity of destroyed rocks. To achieve this goal information on the use of bearing floors made of intact and destroyed ores and rocks, as well as other materials, is systematized. A brief description of the scientific support of mining engineering tasks is given. The phenomenon of the use of residual bearing capacity of disturbed rocks in the structure arising in the mountain massif is characterized. A critical analysis of the concepts of array management is given. Considered alternative options for creating structures for solving problems of reducing the health risk of workers and improving the quality of ores. A new typification of structures using the residual strength of destroyed rocks is given. It has been proved that in underground mining there is an opportunity to realize the residual bearing capacity of the destroyed rocks to create structures with desired properties, which contributes to solving the tasks of labor protection and improving the quality of ores.


2016 ◽  
Vol 10 (1) ◽  
pp. 813-825
Author(s):  
Lina Xu ◽  
Xuedong Guo ◽  
Lei Nie ◽  
Yongmei Qian

In this paper, a theoretical relationship between the load and settlement of a single pile in an Osterberg-Cell test was developed, considering the joint action of piles and soil and a detailed deformation analysis was conducted based on the load transfer theory of piles. The shear test and the compression test were used to determine the load transfer parameters for soil layers around a pile at various depths as well as the parameters for pile-tip soils. Based on this method, a simulation analysis program was applied to determine the location of the balance point in the Osterberg-Cell test to provide a reference for the test design. The analytical methods presented in this paper could be considered practical because the results from the simulation test and on-site measurement indicate that the theoretically predicted result is consistent with the measurements. A reasonable selection of the location of the hydraulic jack-like device (O-cell) could maximize the bearing capacity of testing piles to obtain a more accurate ultimate bearing capacity. This study provides a reference for the design of the Osterberg-Cell test as well as pile foundations.


Sign in / Sign up

Export Citation Format

Share Document