scholarly journals Assessment and Optimization of Water Division Pattern in Sampean Baru Irrigation Area

UKaRsT ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 64
Author(s):  
Joice Prasasty September ◽  
Entin Hidayah ◽  
Gusfan Halik

Recently, agricultural production in the Sampean Baru Irrigation area has not shown optimal cropping production. The average percentage of planted areas in the first (November-February),second (March-June), and third (July-October) planting seasons for the upstream area was 93.67%; 98.02%, and 76.76%, and for the downstream area was 83.54%; 80.81%; and 89.36%. This research aims to optimize the water distribution system based on the calculation of water requirements for plants and the availability of channels to obtain the maximum planting area and amount of agricultural production. This optimization method uses a Dynamic Program with three scenarios. This calculation is based on effective rainfall, crop water requirements, and water discharge availability. Percentage of planted area obtained from the calculation in the dry year for the first, second, and third planting seasons respectively were 100%, 100%, and 90.36%. Based on the existing condition, potential profit obtained for a year is Rp. 170.08 billion. After optimization using Dynamic Program, potential profit in the dry year, normal year, and wet year are IDR 213.52 billion, IDR 215.92 billion, and IDR 228.50 billion, respectively.

2019 ◽  
Vol 2 (1) ◽  
pp. 29
Author(s):  
Safira Ramadhani ◽  
Anna Rosytha ◽  
Miftachul Huda

Water is very important for the survival of living things in this world. Therefore there needs to be a balance between the needs and availability of water, including the need for water in agricultural areas. Water requirements in agricultural areas such as Tawangsari irrigation areas, especially paddy fields, are influenced by several factors, namely; Evapotranspiration, layer replacement, and effective rainfall. The availability of Tawangsari irrigation water from the very limited Tawangsari Dam is a major problem in the Tawangsari irrigation area. From the above problems, it is necessary to study the efficiency of water requirements in the irrigation area by analyzing effective rain, irrigation water needs and the availability of irrigation water. The analysis referred to the Irrigation Planning Criteria 01. From the results of the analysis it could be concluded that the water discharge was very sufficient and could be used to irrigate new land, while the calculation of the amount of water needs was greater than the water available in the dry season. Then from that another alternative was needed, namely by a water distribution rotation system and replacement of the water layer according to the available water so that the available water discharge could be sufficient for the needs.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012024
Author(s):  
Efrizon ◽  
M. Irmansyah ◽  
Era Madona ◽  
N Anggara ◽  
Yultrisna

Abstract The purpose of this study is to create a prepaid PDAM clean water distribution system using a microcontroller based on the Internet of Things (IoT). The hardware used to realize the system consists of ultrasonic sensors, water flow sensors, relays, LCD buzzers and Arduino. ESP 8266 01 for delivery to the Thingspeak app. From the test results obtained HC-SR04 ultrasonic sensor reading error occurs when the water level is low and too high, the maximum measurable water level is 95%. When calculating the comparison between the water discharge that is read by the sensor and that measured by the measuring cup, the results are always not the same. The error when testing the water flow sensor at the water level is less than 49% this is influenced by the speed of the water fired by the pump, where the pump will be under low pressure when the water level is below that value. The system can monitor data readings from the water flow sensor using the ESP8266 monitored on the thinkspeak web server using a smartphone. Overall the tool can function well.


2019 ◽  
Vol 3 (2) ◽  
pp. 172
Author(s):  
Ayu Rahmad Jayanti ◽  
Ririn Endah Badriani ◽  
Yeny Dhokhikah

The clean water distribution in the Genteng Subdistrict, Banyuwangi Regency is included in the service area of the Zone 1 PDAM tile unit. The 60 liters/second reservoir discharge capacity is obtained from Sumber Umbul Sari in the Glenmore District. The distribution of clean water in Zone 1 is still less than 70% of the area served, as the installed discharge capacity is estimated to be insufficient. In order to achieve the distribution goal, a network system must be developed by adding direct debits and planning a new pipeline. The Epanet 2.0 program simplifies the calculation of pipeline networks by integrating elevation data, network maps, pipeline specification, and load. The analysis of the simulation results was conducted using the Public Works Minister's hydraulic parameter standards 2007. Planning of a distribution network and a cost budget in 2029 were done to estimate the water supply needs and budgets required. The hydraulic simulation results based on the analysis of the pressure of all joints are in accordance with the standard, while the analysis of the velocity in pipe is less standard. The need for water discharge in 2029 is 71.6 liters/second. In Kembiritan Village, the construction of distribution pipes with an additional reservoir unit was planned. The planned pipe dimensions in the development area were 25 mm at 796 meters, 50 mm at 4062 meters, and 75 mm at 1518 meters. The cost of planning a clean water distribution system in 2029 is Rp. 1,431,375,000.00. Distribusi air bersih di Kecamatan Genteng Kabupaten Banyuwangi merupakan wilayah pelayanan Zona 1 PDAM unit Genteng. Kapasitas debit reservoir sebesar 60 liter/detik berasal dari sumber umbul sari di Kecamatan Glenmore. Pendistribusian air bersih di wilayah Zona 1 masih kurang dari 70% wilayah yang terlayani, karena diperkirakan kapasitas debit yang terpasang kurang mencukupi. Untuk memenuhi target pemerataan distribusi perlu pengembangan sistem jaringan dengan penambahan debit dan perencanaan jaringan pipa baru. Program Epanet 2.0 memudahkan dalam perhitungan jaringan perpipaan dengan mengintegrasi data elevasi, peta jaringan, spesifikasi pipa dan debit. Analisis hasil simulasi menggunakan standar parameter hidrolis Permen PU 2007. Perencanaan pengembangan jaringan distribusi dan anggaran biaya pada tahun 2029 guna memperkirakan debit kebutuhan air dan anggaran biaya yang dibutuhkan. Hasil simulasi hidrolis berdasarkan analisis tekanan semua junction telah sesuai standar, sedangkan analisis kecepatan masih di bawah standar. Kebutuhan debit air tahun 2029 sebesar 71,6 Liter/detik. Pengembangan pipa distribusi direncanakan di Desa Kembiritan dengan tambahan satu unit reservoir. Dimensi pipa rencana di wilayah pengembangan digunakan diameter 25 mm sepanjang 796 m, diameter 50 mm sepanjang 4062 m dan diameter 75 mm sepanjang 1518 m. Biaya perencanaan sistem distribusi air bersih tahun 2029 sebesar Rp. 1.431.375.000,00.


Water distribution systems are built to meet the water needs of a city or community. The management of water distribution can be conducted by government agencies as well as independently as in Sekar Gading Residence. The aim of this study was to determine the performance of water network service managed by Sekar Gading Residence Service by analyzing the performance of network service to network ability in fulfilling minimum requirement of customer from water discharge side. The result of debit analysis from water meter showed that the reliability level was 70%. While, the system can be considered to be satisfactory if the minimum reliability level of 80% is fulfilled. Therefore, the water management system would be n failling condition about 2.94 months, and with very failure rate varying between 14.29% to 71.43% deficit. The conclusion of this study is the performance of clean water network service in Sekar Gading Housing was not up to the optimal solution.


Author(s):  
Dian Retno Anugrah ◽  
Sobriyah Sobriyah ◽  
Dewi Handayani

<p class="Abstract">Sustainable operation and maintenance activities determine durability and success level of irrigation infrastructure. Success indicator of irrigation such as increasing of water usage efficiency, increasing of plant intensity, decreasing of water distribution conflict, increasing of agricultural production result and decreasing of dryness of plant. Therefore, it is necessary to have research to determine the performance of irrigation operation that had been carried out from 2013 – 2106 at Dimoro Irrigation Area. The Dimoro operational data records 2013 - 2016 were analyzed by simple weighting for each indicator, then analyzed to obtain performance for each year. The results showed that the operation irrigation at Dimoro Irrigation Area tend to succeed if seen from its performance that rises.</p>


EXTRAPOLASI ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 25-32
Author(s):  
Hudhiyantoro Hudhiyantoro ◽  
Bayu Aji Dwi Saputro

AbstractBendung Cawak is located in the district of Kepohbaru, Bojonegoro. Bendung Cawak is used for irrigation and water supplies of Kepohbaru, water availability is insufficient, while the amount of land and also residents who need water, so optimization Bendung Cawak is necessary for the water pitcher bendung can be optimized according to the needs.In this study, to maximize the area of land irrigated area to be optimized. In the optimization model used is the optimization of the monthly for 1 year by calculating the area of irrigated land available, land irrigation is met, the greater availability of water and irrigation needs are met. Optimization method used in this calculation is Program Solver.The results obtained by the reliable discharge available in the Cawak dam reservoir are 2.547 m3 / second. The need for irrigation water with the cropping pattern of Palawija-Padi-Padi at the beginning of planting in August I is 0.579 l / sec / ha as a planting plan with the minimum water requirements. As well as optimization, the optimum cropping pattern and initial planting are August I with the Palawija-Padi-Padi planting intensity 291% and with irrigation area MT I 675 ha, MT II 742 ha, MT III 742 ha. AbstrakBendung Cawak terletak di Kecamatan Kepohbaru, Kabupaten Bojonegoro. Layanan Bendung Cawak dipergunakan untuk keperluan irigasi di Daerah Irigasi Cawak Kecamatan Kepohbaru, ketersediaan air yang tidak mencukupi sedangkan banyaknya lahan yang membutuhkan air , sehingga Optimasi Bendung Cawak sangat diperlukan agar air tampungan Bendung dapat dioptimalkan sesuaidengan kebutuhan.Pada studi ini, untuk memaksimalkan luas lahan irigasi dilakukan optimasi luas lahan irigasi . Dalam model optimasi yang digunakan adalah optimasi satu bulanan selama 1 tahun dengan memperhitungkan luas lahan irigasi yang tersedia, luas lahan irigasi yang terpenuhi, besarnya ketersediaan debit air maksimal, dan kebutuhan air irigasi yang dipenuhi. Metode optimasi yang digunakan dalam perhitungan ini yaitu Program Solver.Hasil yang diperoleh debit andalan yang tersedia di tampungan bendung cawak adalah 2,547 m3/detik. kebutuhan air irigasi dengan pola tanam Palawija-Padi-Padi awal tanam Agustus I itu sebesar 0,579 lt/dtk/ha sebagai rencana tanam dengan kebutuhan air paling minimum.Serta optimasi didapatkan pola tanam dan awal tanam yang paling optimum adalah Agustus I dengan pola tanam Palawija-Padi-Padi intensitas tanam 291% dan dengan luas areal irigasi MT I 675 ha, MT II 742 ha, MT III 742 ha.


2020 ◽  
Vol 12 (3) ◽  
pp. 914
Author(s):  
Zhao Han ◽  
Donghui Ma ◽  
Benwei Hou ◽  
Wei Wang

The malfunction of the water distribution system (WDS) following severe earthquakes have significant impacts on the post-earthquake rescue. Moreover, the restoration priority of earthquake-induced pipeline damages plays an important role in improving the post-earthquake serviceability of WDS and the “seismic resilience”. Thus, to enhance the seismic resilience of WDS, this study develops a dynamic cost-benefit method and introduces three existing methods to determine the restoration priority of pipeline damages based on a quantitative resilience evaluation framework. In this resilience evaluation framework, the restoration priority is firstly determined. Then the time-varying performance of post-earthquake WDS is modeled as a discrete event dynamic system. In this model, the system state changes after the reparation of pipeline damage, and the system performance is simulated by a hydraulic model to be consistent with the system state. In this study, this method is also tested and compared with other existing methods, and the results show that the system resilience corresponding to the restoration priority obtained by this method is close to that obtained by the global optimization method with a relative difference of less than 3%, whereas the calculation complexity is about 0.4% of the optimization model. It is concluded that this proposed method is valid.


2015 ◽  
Vol 18 (3) ◽  
pp. 544-563 ◽  
Author(s):  
Razi Sheikholeslami ◽  
Aaron C. Zecchin ◽  
Feifei Zheng ◽  
Siamak Talatahari

Meta-heuristic algorithms have been broadly used to deal with a range of water resources optimization problems over the past decades. One issue that exists in the use of these algorithms is the requirement of large computational resources, especially when handling real-world problems. To overcome this challenge, this paper develops a hybrid optimization method, the so-called CSHS, in which a cuckoo search (CS) algorithm is combined with a harmony search (HS) scheme. Within this hybrid framework, the CS is employed to find the promising regions of the search space within the initial explorative stages of the search, followed by a thorough exploitation phase using the combined CS and HS algorithms. The utility of the proposed CSHS is demonstrated using four water distribution system design problems with increased scales and complexity. The obtained results reveal that the CSHS method outperforms the standard CS, as well as the majority of other meta-heuristics that have previously been applied to the case studies investigated, in terms of efficiently seeking optimal solutions. Furthermore, the CSHS has two control parameters that need to be fine-tuned compared to many other algorithms, which is appealing for its practical application as an extensive parameter-calibration process is typically computationally very demanding.


2019 ◽  
Vol 5 (01) ◽  
pp. 25-34
Author(s):  
Koko Hermanto ◽  
Silvia Firda Utami

Abstract. The area of agriculture in the Moyo Hulu sub-district of Sumbawa Regency is 6000 hectares with irrigation water sources from Batu Bulan Dam, which is the largest dam in Sumbawa Regency with an area of 932 hectares. Considering that Sumbawa Regency is one of the regions with a high level of drought, information on irrigation water requirements for land preparation needs to be known because it can optimize the allocation of the use of dam water discharge. And one of the important stages needed in the planning and management of irrigation systems. Based on this, the aim of this study is to forecast water requirements for land preparation in the irrigation area of Batu Bulan Dam by using cyclical methods because the data patterns are cyclical or seasonal. The factors that influence water requirements for preparing agricultural land are topography, hydrology, climatology and soil texture. From these factors, the data is then analysed so that the volume of water preparation needs to be obtained every month so that the results of the analysis can be predicted for the next period. Keyword: Forecasting, Cyclic methods, water requirements for land preparation, irrigation, agriculture.   Abstrak. Luas area pertanian di kecamatan Moyo Hulu Kabupaten Sumbawa sebesar 6000 hektar dengan sumber air irigasi dari Bendungan Batu Bulan yang merupakan bendungan terbesar di Kabupaten Sumbawa dengan luas 932 hektar. Mengingat Kabupaten Sumbawa salah satu wilayah dengan tingkat kekeringan yang cukup tinggi maka Informasi kebutuhan air irigasi untuk penyiapan lahan perlu diketahui karena dapat mengoptimalkan pengalokasian pengunaan debit air bendungan. Serta salah satu tahap penting yang diperlukan dalam perencanaan dan pengelolaan sistem irigasi. Berdasarkan hal tersebut tujuan dari penelitian ini adalah meramalkan kebutuhan air untuk penyiapan lahan di daerah irigasi Bendungan Batu Bulan dengan menngunakan metode siklis karena pola datanya bersifat siklis atau musiman. Adapun faktor-faktor yang mempengaruhi kebutuhan air untuk penyiapan lahan pertanian adalah topografi, hidrologi, klimatologi dan tekstur tanah. Dari data-data faktor tersebut selanjutnya dianalisa sehingga diperoleh volume kebutuhan air penyiapan lahan setiap bulannya sehingga dari hasil analisa tersebut dapat diramalkan untuk periode berikutnya. Keyword: Peramalan, metode Siklis,Kebutuhan air penyiapan lahan, irigasi, pertanian.      


Sign in / Sign up

Export Citation Format

Share Document