scholarly journals Triclosan: Electrochemistry, Spontaneous Degradation and Effects on Double-Stranded DNA

2021 ◽  
Vol 8 (10Years) ◽  
Author(s):  
Elizaura Silva ◽  
Ilanna Lopes ◽  
Evellin Bruzaca ◽  
Paulina Andréa Carvalho ◽  
Auro Atsushi Tanaka

Triclosan (TCS) is an antiseptic agent widely used mainly in personal care products and an important contaminant, which degrades in the environment causing toxicity on health, including negative effects on DNA. In this context, an electrochemical investigation of TCS in aqueous solution was studied by voltammetric techniques. The TCS underwent irreversible oxidation in a pH-dependent process, leading to the formation of two reversibly oxidized and pH-dependent oxidation products. An oxidation mechanism for TCS and its oxidation products in neutral aqueous medium was proposed. Besides that, the TCS spontaneously degraded into supporting eletrolytes with 3.4 ≤ pH ≤ 12.04 over the incubation time and the degraded TCS in solution was detected by electrochemical and spectrophotometric techniques. A higher degradation of TCS was observed in alkaline medium. In addition, the interaction in situ of this anti-microbial with DNA was investigated using dsDNA incubated solutions and dsDNA electrochemical bisosensor, by voltammetry. TCS and degraded TCS interacted with dsDNA causing the condensation of the double helix structure, release of guanine (by TCS and dedraded TCS) and adenine (by degraded TCS) bases from dsDNA and a possible intercalation of degraded TCS in the polynucleotide chain. No dsDNA oxidative damage was detected.

2020 ◽  
Author(s):  
Yunzhong Wang ◽  
Saixing Tang ◽  
Yating Wen ◽  
Shuyuan Zheng ◽  
Bing Yang ◽  
...  

<div>Persistent room-temperature phosphorescence (p-RTP) from pure organics is attractive </div><div>due to its fundamental importance and potential applications in molecular imaging, </div><div>sensing, encryption, anticounterfeiting, etc.1-4 Recently, efforts have been also made in </div><div>obtaining color-tunable p-RTP in aromatic phosphors5 and nonconjugated polymers6,7. </div><div>The origin of color-tunable p-RTP and the rational design of such luminogens, </div><div>particularly those with explicit structure and molecular packing, remain challenging. </div><div>Noteworthily, nonconventional luminophores without significant conjugations generally </div><div>possess excitation-dependent photoluminescence (PL) because of the coexistence of </div><div>diverse clustered chromophores6,8, which strongly implicates the possibility to achieve </div><div>color-tunable p-RTP from their molecular crystals assisted by effective intermolecular </div><div>interactions. Here, inspirited by the highly stable double-helix structure and multiple </div><div>hydrogen bonds in DNA, we reported a series of nonconventional luminophores based on </div><div>hydantoin (HA), which demonstrate excitation-dependent PL and color-tunable p-RTP </div><div>from sky-blue to yellowish-green, accompanying unprecedentedly high PL and p-RTP </div><div>efficiencies of up to 87.5% and 21.8%, respectively. Meanwhile, the p-RTP emissions are </div><div>resistant to vigorous mechanical grinding, with lifetimes of up to 1.74 s. Such robust, </div><div>color-tunable and highly efficient p-RTP render the luminophores promising for varying </div><div>applications. These findings provide mechanism insights into the origin of color-tunable </div><div>p-RTP, and surely advance the exploitation of efficient nonconventional luminophores.</div>


1972 ◽  
Vol 27 (2) ◽  
pp. 196-200 ◽  
Author(s):  
S. Marciani ◽  
M. Terbojevic ◽  
F. Dall’Acqua

Light scattering measurements performed on DNA after irradiation in the presence of psoralen clearly show that inter strand cross linkings are present in the macromolecule. In fact after heat denaturation and successive cooling irradiated macromolecule shows a molecular weight practically unchanged while a DNA sample after the same treatment shows a molecular weight half of the intact native DNA. Also the general conformation of irradiated DNA undergoes practically to no modifications after the same heat treatment while native DNA shows itself to have been strongly modified. Moreover, on the basis of flow dichroism determinations, DNA cross-linked by psoralen after heat denaturation showed to be able to restore its ordered double helix structure, during the successive cooling.


1994 ◽  
Vol 266 (3) ◽  
pp. H1202-H1213 ◽  
Author(s):  
P. P. De Tombe ◽  
W. C. Little

Recent studies in isolated and in vivo canine hearts have suggested that the left ventricular end-systolic pressure (LVPes) of ejecting beats is the net result of a balance between positive and negative effects of ejection. At present, it is unknown whether these ejection effects are merely a ventricular chamber property or represent a fundamental myocardial property. Accordingly, we examined the effects of ejection in eight isolated rat cardiac trabeculae at the sarcomere level. We approximated in situ sarcomere shortening patterns using an iterative computer loading system. Six isovolumic contractions were compared with four ejecting contractions. The superfusing solution contained either 0.7 mM Ca2+ or 0.65 mM Sr2+ plus 0.15 mM Ca2+. With Ca2+, simulated LVPes ("LVP"es) of ejecting contractions was significantly lower than isovolumic "LVP"es (-5.3 +/- 5.6%), whereas with Sr2+, ejecting "LVP"es was significantly higher than isovolumic "LVP"es (+4.5 +/- 7.5%). Contraction duration and time to end systole were markedly prolonged in ejecting vs. isovolumic contractions with either Ca2+ or Sr2+. As a consequence, comparison of simulated LVP between ejecting and isovolumic beats throughout the contraction, i.e., at the same simulated LVV and time, revealed only a positive effect of ejection with either Ca2+ (+18.8 +/- 5.5%) or Sr2+ (+23.4 +/-9.3%). We conclude that both positive and negative effects of ejection are basic myocardial properties.


2020 ◽  
Vol 20 (19) ◽  
pp. 11451-11467
Author(s):  
Zhenhao Ling ◽  
Qianqian Xie ◽  
Min Shao ◽  
Zhe Wang ◽  
Tao Wang ◽  
...  

Abstract. The dicarbonyls glyoxal (Gly) and methylglyoxal (Mgly) have been recognized as important precursors of secondary organic aerosols (SOAs) through the atmospheric heterogeneous process. In this study, field measurement was conducted at a receptor site in the Pearl River Delta (PRD) region in southern China, and an observation-based photochemical box model was subsequently applied to investigate the production and evolution of Gly and Mgly as well as their contributions to SOA formation. The model was coupled with a detailed gas-phase oxidation mechanism of volatile organic compounds (VOCs) (i.e., Master Chemical Mechanism, MCM, v3.2), heterogeneous processes of Gly and Mgly (i.e., reversible partitioning in aqueous phase, irreversible volume reactions and irreversible surface uptake processes), and the gas–particle partitioning of oxidation products. The results suggested that without considering the heterogeneous processes of Gly and Mgly on aerosol surfaces, the model would overpredict the mixing ratios of Gly and Mgly by factors of 3.3 and 3.5 compared to the observed levels. The agreement between observation and simulation improved significantly when the irreversible uptake and the reversible partitioning were incorporated into the model, which in total both contributed ∼ 62 % to the destruction of Gly and Mgly during daytime. Further analysis of the photochemical budget of Gly and Mgly showed that the oxidation of aromatics by the OH radical was the major pathway producing Gly and Mgly, followed by degradation of alkynes and alkenes. Furthermore, based on the improved model mechanism, the contributions of VOC oxidation to SOA formed from gas–particle partitioning (SOAgp) and from heterogeneous processes of Gly and Mgly (SOAhet) were also quantified. It was found that o-xylene was the most significant contributor to SOAgp formation (∼ 29 %), while m,p-xylene and toluene made dominant contributions to SOAhet formation. Overall, the heterogeneous processes of Gly and Mgly can explain ∼ 21 % of SOA mass in the PRD region. The results of this study demonstrated the important roles of heterogeneous processes of Gly and Mgly in SOA formation and highlighted the need for a better understanding of the evolution of intermediate oxidation products.


2008 ◽  
Vol 8 (4) ◽  
pp. 14033-14085 ◽  
Author(s):  
D. Taraborrelli ◽  
M. G. Lawrence ◽  
T. M. Butler ◽  
R. Sander ◽  
J. Lelieveld

Abstract. We present an oxidation mechanism of intermediate size for isoprene (2-methyl-1,3-butadiene) suitable for simulations in regional and global atmospheric chemistry models, which we call MIM2. It is a reduction of the corresponding detailed mechanism in the Master Chemical Mechanism (MCM v3.1) and intended as the second version of the well-established Mainz Isoprene Mechanism (MIM). Our aim is to improve the representation of tropospheric chemistry in regional and global models under all NOx regimes. We evaluate MIM2 and re-evaluate MIM through comparisons with MCM v3.1. We find that MIM and MIM2 compute similar O3, OH and isoprene mixing ratios. Unlike MIM, MIM2 produces small relative biases for NOx and organic nitrogen-containing species due to a good representation of the alkyl and peroxy acyl nitrates (RONO2 and RC(O)OONO2). Moreover, MIM2 computes only small relative biases with respect to hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), methanol (CH3OH), formaldehyde (HCHO), peroxy acetyl nitrate (PAN), and formic and acetic acids (HCOOH and CH3C(O)OH), being always below ≈6% in all NOx scenarios studied. Most of the isoprene oxidation products are represented explicitly, including methyl vinyl ketone (MVK), methacrolein (MACR), hydroxyacetone and methyl glyoxal. MIM2 is mass-conserving with respect to carbon, including CO2 as well. Therefore, it is suitable for studies assessing carbon monoxide (CO) from biogenic sources, as well as for studies focused on the carbon cycle. Compared to MIM, MIM2 considers new species like acetaldehyde (CH3CHO), propene (CH2=CHCH3) and glyoxal (CHOCHO) with global chemical production rates for the year 2005 of 7.3, 9.5 and 33.8 Tg/yr, respectively. Our new mechanism is expected to substantially improve the results of atmospheric chemistry models by more accurately representing the interplay between atmospheric chemistry, transport and deposition, especially of nitrogen reservoir species. MIM2 allows regional and global models to easily incorporate new experimental results on the chemistry of organic species.


2008 ◽  
Vol 595-598 ◽  
pp. 967-974 ◽  
Author(s):  
E. Godlewska ◽  
M. Mitoraj ◽  
B. Jajko

This paper presents comparative studies on the performance of two titanium alloys (Ti- 6Al-1Mn, Ti-45.9Al-8Nb) in an oxidizing atmosphere at 700 oC and 800 oC. Testing procedure comprised thermogravimetric measurements at a constant temperature and in thermal cycling conditions (1-h and 20-h cycles at constant temperature followed by rapid cooling). The overall duration of the cyclic oxidation tests was up to 1000 hours. The oxidized specimens were analyzed in terms of chemical composition, phase composition, and morphology (SEM/EDS, TEM/EDS, XRD). The extent and forms of alloy degradation were evaluated on the basis of microscopic observation of specimen fractures and cross-sections. Selected specimens were examined by means of XPS, SIMS and GDS. Oxidation mechanism of Ti-46Al-8Nb was assessed a two-stage oxidation method using oxygen-18 and oxygen-16. Apparently, the oxidation of this alloy proceeded in several stages. According to XPS, already after quite short reaction time, the specimens were covered with a very thin oxide film, mainly composed of aluminum oxide (corundum). A thicker layer of titanium dioxide (rutile) developed underneath. These two layers were typical of the oxidation products formed on this alloy, even when tested in thermal cycling conditions. In general, the scale had a complex multilayer structure but it was thin and adherent. Under the continuous layer of titania, there was a fine-grained zone composed of mixed oxides. The alloy/scale interface was marked with niobium-rich precipitates embedded in a titanium-rich matrix. There were some indications of secondary processes occurring under the initial continuous oxide layers (e.g. characteristic layout of pores or voids). Thickness of inner scale layers clearly increased according to parabolic kinetics, while that of the outer compact layer (mainly TiO2) changed only slightly. The distribution of oxygen isotopes across the scale/alloy interface indicated two-way diffusion of the reacting species – oxygen inward and metals outward diffusion. Silicon deposited on Ti-6Al-1Mn alloy positively affected scale adhesion and remarkably reduced alloy degradation rate.


Sign in / Sign up

Export Citation Format

Share Document