Electrophysical properties of composites based on low density polyethylene and zeolite mineral

2020 ◽  
pp. 65-72
Author(s):  
A. M. Maharramov ◽  
◽  
V. J. Dzhafarov ◽  
M. N. Bayramov ◽  
N. Sh. Aliyev ◽  
...  

Dielectric parameters (ε′, tgδ) and electrical conductivity (σ) of samples composites of 60 vol. % LDPE/40 vol. % zeolite, 40 vol. % LDPE/60 vol. % zeolite was measured at frequencies 25 – 106 Hz and a temperature range 293 – 403 K. Composites based on a homogeneous mixture of LDPE with powdered natural zeolite (clinoptiolite and heilandite — Agdag deposit, Azerbaijan) were obtained in the form of film samples 140 – 200 microns and 20 mm in diameter, by hot pressing at a temperature of 403 – 413 K and a pressure of 15 MPa, followed by quenching in a mixture of ice-water. The temperature dependence of the electrophysical parameters of the samples of the composites revealed that the dielectric loss tgδ and electrical conductivity σ increase with increasing filler content, and this is due to an increase in the concentration of charge carriers and their mobility. The study of the frequency dependences ε′ = ƒ(logν), tgδ = ƒ(logν) and logσ = ƒ(logν) showed the presence of two linear regions of the frequency dependences of the electrical conductivity, which vary according to the law σас (ν) ∼ ν0,73, and this is more consistent with the hopping mechanism of the electrical conductivity of LDPE/zeolite composites.

2021 ◽  
pp. 2160013
Author(s):  
A. V. Nazarenko ◽  
A. V. Pavlenko ◽  
Y. I. Yurasov

This work presents the results of studying the electrophysical properties of the YCu[Formula: see text]Mn[Formula: see text]O3 solid solution in the range of temperatures of [Formula: see text] = 26–400[Formula: see text]C and frequency range of [Formula: see text] = 102–105 Hz. A model description of the revealed dispersion of dielectric parameters in the material is made. The nonclassical modified Havriliak–Negami model written for complex electrical conductivity was used as an approximation model. It is shown that the application of this model almost exactly describes the frequency behavior of the dielectric constant [Formula: see text]/[Formula: see text], the dielectric loss tangent tg[Formula: see text] as well as the real and imaginary parts of complex conductivity [Formula: see text] and [Formula: see text]. The results of this work are an important step in identifying the opportunities and understanding the applications of this model.


2019 ◽  
pp. 3-5
Author(s):  
M. Yu. Dolomatov ◽  
A. M. Petrov ◽  
R. Z. Bakhtizin ◽  
O. L. Ryzhikov

The structure and specific electrical conductivity of composite materials based on vacuum residue and low density polyethylene has been studied. It is shown that changes in the properties of composites correspond to changes in the degree of structural heterogeneity.


2008 ◽  
Vol 34 (3) ◽  
pp. 227-239 ◽  
Author(s):  
I. A. Sokolov ◽  
I. V. Murin ◽  
V. D. Khripun ◽  
N. A. Valova ◽  
Yu. K. Startsev ◽  
...  

2017 ◽  
Vol 31 (6) ◽  
pp. 837-861 ◽  
Author(s):  
Jin-Hae Chang

Polyimide (PI) nanocomposites containing two different functionalized graphene sheets (FGSs) were synthesized, and their thermal properties, morphology, oxygen permeability, and electrical conductivity were compared. Hexadecylamine–graphene sheets and 4-amino- N-hexadecylbenzamide–graphene sheets were utilized. Hybrid films were obtained from blended solutions of PI and FGSs, with the filler content with respect to the PI varying from 0 wt% to 10 wt%. The differences in the properties of the PI matrix were then analyzed with respect to filler content. Transmission electron microscopy analysis confirmed that the two FGSs were dispersed homogeneously throughout the polymer matrix, although some FGS aggregates were also formed. Furthermore, it was observed that the addition of small amounts of FGS nanofiller was sufficient to improve the coefficient of thermal expansion, the gas barrier properties, and the electrical conductivity of the hybrid films. In contrast, the glass transition temperature and the initial decomposition temperature of the PI hybrid films continued to decrease with increasing FGS content.


1997 ◽  
Vol 500 ◽  
Author(s):  
M. Park ◽  
G. M. Choi

ABSTRACTComposition. dependence of electrical conductivity of ionic-electronic composite was camined using yttria(8mol%) stabilized zirconia-NiO composites. The contributions of ectronic and ionic charge carriers to the electrical conductivity were determined by Hebb-Vagner polarization technique and electromotive force measurement of galvanic cell. Up to 6 sol% NiO addition, the conductivity decreased since the electronic NiO acted as an insulator in onic matrix. However the ionic transport was dominant until NiO content reaches 26 vol%. Mixed conduction was observed between 26 and 68 vol% of NiO. The effects of composition on he electrical properties were explained by the microstructure and thus by the distribution of two hases.


2011 ◽  
Vol 8 (1) ◽  
pp. 168-174
Author(s):  
Baghdad Science Journal

The present studies are focused on the modification of the properties of epoxy resin with different additives namely aluminum, copper by preparing of composites systems with percentage (20%, 40% and 50%) of the above additives. The experimental results show that the D.C of conductivity on wt% filler content at ( 293-413 ) K electrical conductivity of all above composites increased with temperature for composites with filler contact and find the excellent electrical conductivity of copper and lie between (2.6*10-10 - 2.1*10-10)?.cm . The activation energy of the electrical conductivity is determined and found to decrease with increasing the filler concentration.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 336
Author(s):  
Yu Shang ◽  
Qiang Liu ◽  
Chen Mao ◽  
Sen Wang ◽  
Fan Wang ◽  
...  

Cellulose insulation polymer material is widely used in oil immersed bushing. Moisture is one of the important reasons for the deterioration of cellulose polymer insulation, which seriously threatens the safe and stable operation of bushing. It is significant to study the polarization and depolarization behavior of oil-immersed cellulose polymer insulation with different moisture condition under higher voltage. Based on polarization/depolarization current method and charge difference method, the polarization/depolarization current, interfacial polarization current and electrical conductivity of cellulose polymer under different DC voltages and humidity were obtained. Based on molecular-dynamics simulation, the effect of moisture on cellulose polymer insulation was analyzed. The results show that the polarization and depolarization currents become larger with the increase in DC voltage and moisture. The higher applied voltage will accelerate the charge carrier motion. The ionization of water molecules will produce more charge carriers. Thus, high DC voltage and moisture content will increase the interface polarization current. Increased moisture content results in more charge carriers ionized by water molecules. In addition, the invasion of moisture will reduce the band width of cellulose polymer and enhance its electrostatic potential, so as to improve its overall electrical conductivity. This paper provides a reference for analyzing the polarization characteristics of charge carriers in cellulose polymer insulation.


Author(s):  
Ч.И. Абилов ◽  
М.Ш. Гасанова ◽  
Н.Т. Гусейнова ◽  
Э.К. Касумова

The results of studying the temperature dependences of electrical conductivity, thermoelectric coefficient, Hall mobility of charge carriers, total and electronic thermal conductivity, as well as phonon thermal resistance of alloys of (CuInSe2)1-x(In2Te3)x solid solutions at x=0.005 and 0.0075 are presented. The values ​​of these parameters for certain temperatures were used to calculate the values ​​of the thermoelectric figure of merit of the indicated compositions. It turned out that as the temperature rises, the thermoelectric figure of merit tends to grow strongly, from which it can be concluded that these materials can be used in the manufacture of thermoelements.


2021 ◽  
Vol 25 (2) ◽  
pp. 23-27
Author(s):  
O.N. Dabizha ◽  
T.P. Pateyuk

The technology of obtaining solid electrolytes by mechanochemical method with subsequent cold pressing from inexpensive common clinoptilolite rocks and ionic salts – sodium and ammonium hydrophosphates at varying ratios of the initial components and the duration of mechanical activation is presented. Their physical and transport properties, namely, true density, hygroscopic humidity, specific surface according to Tovarov, volumetric electrical conductivity were found. Promising samples for further research were created, recommended for use as solid electrolytes.


Sign in / Sign up

Export Citation Format

Share Document