scholarly journals Method for transforming symbolic radar marks of low-noticeable moving objects based on the Talbot effect

Radiotekhnika ◽  
2021 ◽  
pp. 129-137
Author(s):  
V. Zhyrnov ◽  
S. Solonskaya

In this paper a method to transform radar images of moving aerial objects with scintillating inter-period fluctuations, sometimes resulting to complete signal fading, using the Talbot effect is considered. These transformations are reduced to the establishment of a certain correspondence of the asymptotic equality of perception of visual images, arbitrarily changing in time and space, in the statement about the conditions of simple equality of perception of images of radar marks that have different frequencies of fluctuations. It is shown how this approach can be used to analyze radar data by transforming and smoothing scintillating signal fluctuations, invisible in the presence of interference, into visible symbolic images. First, to detect and recognize the aerial objects from the analysis of relations and functional (semantic) dependencies between attributes, second, to make a decision based on semantic components of symbolic radar images. The possibility of using such transformation to generate pulse-frequency code of fluctuations of the symbolic radar angel-echo images as an important characteristic for their recognition has been experimentally verified. Algorithms for generating symbolic images in asynchronous and synchronous pulse-frequency code are formulated. The symbolic image represented by such a code is considered as an additional feature for recognizing and filtering out natural interferences such as angel-echoes.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3410
Author(s):  
Claudia Malzer ◽  
Marcus Baum

High-resolution automotive radar sensors play an increasing role in detection, classification and tracking of moving objects in traffic scenes. Clustering is frequently used to group detection points in this context. However, this is a particularly challenging task due to variations in number and density of available data points across different scans. Modified versions of the density-based clustering method DBSCAN have mostly been used so far, while hierarchical approaches are rarely considered. In this article, we explore the applicability of HDBSCAN, a hierarchical DBSCAN variant, for clustering radar measurements. To improve results achieved by its unsupervised version, we propose the use of cluster-level constraints based on aggregated background information from cluster candidates. Further, we propose the application of a distance threshold to avoid selection of small clusters at low hierarchy levels. Based on exemplary traffic scenes from nuScenes, a publicly available autonomous driving data set, we test our constraint-based approach along with other methods, including label-based semi-supervised HDBSCAN. Our experiments demonstrate that cluster-level constraints help to adjust HDBSCAN to the given application context and can therefore achieve considerably better results than the unsupervised method. However, the approach requires carefully selected constraint criteria that can be difficult to choose in constantly changing environments.


2021 ◽  
Author(s):  
Anastase Charantonis ◽  
Vincent Bouget ◽  
Dominique Béréziat ◽  
Julien Brajard ◽  
Arthur Filoche

<p>Short or mid-term rainfall forecasting is a major task with several environmental applications such as agricultural management or flood risks monitoring. Existing data-driven approaches, especially deep learning models, have shown significant skill at this task, using only rainfall radar images as inputs. In order to determine whether using other meteorological parameters such as wind would improve forecasts, we trained a deep learning model on a fusion of rainfall radar images and wind velocity produced by a weather forecast model. The network was compared to a similar architecture trained only on radar data, to a basic persistence model and to an approach based on optical flow. Our network outperforms by 8% the F1-score calculated for the optical flow on moderate and higher rain events for forecasts at a horizon time of 30 minutes. Furthermore, it outperforms by 7% the same architecture trained using only rainfall radar images. Merging rain and wind data has also proven to stabilize the training process and enabled significant improvement especially on the difficult-to-predict high precipitation rainfalls. These results can also be found in Bouget, V., Béréziat, D., Brajard, J., Charantonis, A., & Filoche, A. (2020). Fusion of rain radar images and wind forecasts in a deep learning model applied to rain nowcasting. arXiv preprint arXiv:2012.05015</p>


2009 ◽  
Vol 48 (1) ◽  
pp. 89-110 ◽  
Author(s):  
Philippe Lopez

Abstract The propagation of electromagnetic waves emitted from ground-based meteorological radars is determined by the stratification of the atmosphere. In extreme superrefractive situations characterized by strong temperature inversions or strong vertical gradients of moisture, the radar beam can be deflected toward the ground (ducting or trapping). This phenomenon often results in spurious returned echoes and misinterpretation of radar images such as erroneous precipitation detection. In this work, a 5-yr global climatology of the frequency of superrefractive and ducting conditions and of trapping-layer base height has been produced using refractivity computations from ECMWF temperature, moisture, and pressure analyses at a 40-km horizontal resolution. The aim of this climatology is to better document how frequent such events are, which is a prerequisite for fully benefiting from radar data information for the multiple purposes of model validation, precipitation analysis, and data assimilation. First, the main climatological features are summarized for the whole globe: high- and midlatitude oceans seldom experience superrefraction or ducting whereas tropical oceans are strongly affected, especially in regions where the trade wind inversion is intense and lying near the surface. Over land, seasonal averages of superrefraction (ducting) frequencies reach 80% (40%) over tropical moist areas year-round but remain below 40% (15%) in most other regions. A particular focus is then laid on Europe and the United States, where extensive precipitation radar networks already exist. Seasonal statistics exhibit a pronounced diurnal cycle of ducting occurrences, with averaged frequencies peaking at 60% in summer late afternoon over the eastern half of the United States, the Balkans, and the Po Valley but no ducts by midday. Similarly high ducting frequencies are found over the southwestern coast of the United States at night. A potentially strong reduction of ducting occurrences with increased radar height (especially in midlatitude summer late afternoon) is evidenced by initiating refractivity vertical gradient computations from either the lowest or the second lowest model level. However, installing radar on tall towers also brings other problems, such as a possible amplification of sidelobe clutter echoes.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1215 ◽  
Author(s):  
Xin Wang ◽  
Ling Qiao

A sparse-based refocusing methodology for multiple slow-moving targets (MTs) located inside strong clutter regions is proposed in this paper. The defocused regions of MTs in synthetic aperture radar (SAR) imagery were utilized here instead of the whole original radar data. A joint radar projection operator for the static and moving objects was formulated and employed to construct an optimization problem. The Lp norm constraint was utilized to promote the separation of MT data and the suppression of clutter. After the joint sparse imaging processing, the energy of strong static targets could be suppressed significantly in the reconstructed MT imagery. The static scene imagery could be derived simultaneously without the defocused MT. Finally, numerical simulations were used verify the validity and robustness of the proposed methodology.


2020 ◽  
Vol 34 (01) ◽  
pp. 378-385
Author(s):  
Zezhou Cheng ◽  
Saadia Gabriel ◽  
Pankaj Bhambhani ◽  
Daniel Sheldon ◽  
Subhransu Maji ◽  
...  

The US weather radar archive holds detailed information about biological phenomena in the atmosphere over the last 20 years. Communally roosting birds congregate in large numbers at nighttime roosting locations, and their morning exodus from the roost is often visible as a distinctive pattern in radar images. This paper describes a machine learning system to detect and track roost signatures in weather radar data. A significant challenge is that labels were collected opportunistically from previous research studies and there are systematic differences in labeling style. We contribute a latent-variable model and EM algorithm to learn a detection model together with models of labeling styles for individual annotators. By properly accounting for these variations we learn a significantly more accurate detector. The resulting system detects previously unknown roosting locations and provides comprehensive spatio-temporal data about roosts across the US. This data will provide biologists important information about the poorly understood phenomena of broad-scale habitat use and movements of communally roosting birds during the non-breeding season.


1985 ◽  
Vol 38 (3) ◽  
pp. 375-383 ◽  
Author(s):  
G. L. Austin ◽  
A. Bellon ◽  
M. Riley ◽  
E. Ballantyne

The advantages of being able to process marine radar imagery in an on-line computer system have been illustrated by study of some navigational problems. The experiments suggest that accuracies of the order of 100 metres may be obtained in navigation in coastal regions using map overlays with marine radar data. A similar technique using different radar imagery of the same location suggests that the pattern-recognition technique may well yield a position-keeping ability of better than 10 metres.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 290 ◽  
Author(s):  
Rubel ◽  
Lukin ◽  
Rubel ◽  
Egiazarian

Images acquired by synthetic aperture radars are degraded by speckle that prevents efficient extraction of useful information from radar remote sensing data. Filtering or despeckling is a tool often used to improve image quality. However, depending upon image and noise properties, the quality of improvement can vary. Besides, a quality can be characterized by different criteria or metrics, where visual quality metrics can be of value. For the case study of discrete cosine transform (DCT)based filtering, we show that improvement of radar image quality due to denoising can be predicted in a simple and fast way, especially if one deals with particular type of radar data such as images acquired by Sentinel-1. Our approach is based on application of a trained neural network that, in general, might have a different number of inputs (features). We propose a set of features describing image and noise statistics from different viewpoints. From this set, that contains 28 features, we analyze different subsets and show that a subset of the 13 most important and informative features leads to a very accurate prediction. Test image generation and network training peculiarities are discussed. The trained neural network is then tested using different verification strategies. The results of the network application to test and real-life radar images are presented, demonstrating good performance for a wide set of quality metrics.


Author(s):  
Dmytro Mozgovoy

Automated image processing methodology is proposed for all-weather satellite monitoring of floods based on C-band radar data, which allows to determine the boundaries and areas of flooded areas when assessing the magnitude, dynamics and consequences of floods. Processing results comparison of medium spatial resolution scanner and radar images from Sentinel-1 and Sentinel-2 satellites is made. The advantages of a radar survey with cloudiness in the monitoring area are shown.


2021 ◽  
Vol 13 (24) ◽  
pp. 5136
Author(s):  
Valery Bondur ◽  
Tumen Chimitdorzhiev ◽  
Aleksey Dmitriev ◽  
Pavel Dagurov

In this paper, we demonstrate the estimation capabilities of landslide reactivation based on various SAR (Synthetic Aperture Radar) methods: Cloude-Pottier decomposition of Sentinel-1 dual polarimetry data, MT-InSAR (Multi-temporal Interferometric Synthetic Aperture Radar) techniques, and cloud computing of backscattering time series. The object of the study is the landslide in the east of Russia that took place on 11 December 2018 on the Bureya River. H-α-A polarimetric decomposition of C-band radar images not detected significant transformations of scattering mechanisms for the surface of the rupture, whereas L-band radar data show changes in scattering mechanisms before and after the main landslide. The assessment of ground displacements along the surface of the rupture in the 2019–2021 snowless periods was carried out using MT-InSAR methods. These displacements were 40 mm/year along the line of sight. The SBAS-InSAR results have allowed us to reveal displacements of great area in 2020 and 2021 snowless periods that were 30–40 mm/year along the line-of-sight. In general, the results obtained by MT-InSAR methods showed, on the one hand, the continuation of displacements along the surface of the rupture and on the other hand, some stabilization of the rate of landslide processes.


Sign in / Sign up

Export Citation Format

Share Document