scholarly journals The Feasibility of Organic Methods of Weed Control in Organic Peanut Crop

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Rowe, Sedrick ◽  
Sharif- Harris ◽  
Hamidah Hamidah
Keyword(s):  
Weed Science ◽  
2007 ◽  
Vol 55 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Theodore M. Webster ◽  
Wilson H. Faircloth ◽  
J. Timothy Flanders ◽  
Eric P. Prostko ◽  
Timothy L. Grey

Bengal dayflower (also known as tropical spiderwort) is one of the most troublesome weeds in peanut in Georgia, United States. Field studies conducted in 2004 and 2005 evaluated the relationship between the duration of Bengal dayflower interference and peanut yield in an effort to optimize the timing of weed control. In 2004, the critical period of weed control (CPWC) necessary to avoid greater than 5% peanut yield loss was between 316 and 607 growing degree days (GDD), which corresponded to an interval between June 8 and July 2. In 2005, the CPWC ranged from 185 to 547 GDD, an interval between May 30 and July 3. Maximum yield loss in 2005 from season-long interference of Bengal dayflower was 51%. In 2004, production of peanut pods was eliminated by interference with Bengal dayflower for the initial 6 wk (495 GDD) of the growing season. Robust Bengal dayflower growth in 2004 shaded the peanut crop, likely intercepting fungicide applications and causing a reduction in peanut yield. Therefore, the competitive effects of Bengal dayflower are likely complicated with the activity of plant pathogens. In spite of higher Bengal dayflower population densities, greater Bengal dayflower growth, and greater peanut yield losses in 2004 than in 2005, the CPWC was a relatively similar 4-wk period that ended during the first week of July, for peanut that was planted in the first week of May.


2018 ◽  
Vol 10 (8) ◽  
pp. 447
Author(s):  
Henrique Gonzalez Zanardo ◽  
Willians César Carrega ◽  
Neriane Hijano ◽  
Anne Elise Cesarin ◽  
Pedro de F. R. Barbosa Martins ◽  
...  

Weed interference is one of the main factors responsible for reducing the productivity of the peanut crop. Among weed control methods, the chemical is considered one of the main tools, however, the herbicides registered for this crop are scarce. The objective of this study was to evaluate the selectivity of herbicides applied in post-emergence in Runner peanut cultivars. For this, an experiment was performed in an 11x5 factorial scheme, meaning 10 herbicides plus one control (without herbicide) and five peanut cultivars, with four replicates. Visual evaluations of phytointoxication were carried out at 7, 14 and 21 days after application of the herbicides. At the end of the experiment, was determined the dry mass of aboveground and root parts. Based on the results obtained, it is concluded that the herbicides 2,4-D (1.50 L ha-1), mesotrione (0.3 L ha-1), saflufenacil (0.75 L ha-1), imazapic (175 g ha-1) and S-metolachlor (1.75 L ha-1) have potential to be used for all the peanut cultivars studied. Herbicides hexazinone (2.50 kg ha-1), amicarbazone (2.00 kg ha-1), tebuthiuron (2.00 L ha-1), clomazone (2.00 L ha-1) and sulfentrazone (1.20 L ha-1) must not be indicated, at these doses, for post-emergence spraying in the evaluated cultivars. The genotypes do not react equally to certain products, therefore, there is a need for further studies the at field conditions to attest the responses obtained in the present study and verify that the yield potential is not affected.


2014 ◽  
Vol 41 (2) ◽  
pp. 124-130 ◽  
Author(s):  
D. Q. Wann ◽  
R. S. Tubbs

ABSTRACT Previous research has shown that mechanical cultivation is the most effective and affordable method of weed control in organic peanut production. However, growers are in need of more information on specific integrated cultivation regimes for effective season-long weed control with minimal hand-weeding requirements. Therefore, field trials were conducted in 2010–2012 to evaluate the effects of various tine and sweep cultivation treatments combined with or without hand-weeding on season-long weed control, stand establishment, and yield and grade of an organically-managed peanut crop. Tine cultivation treatments consisted of no cultivation or weekly cultivations for 5 wks after planting (WAP). Sweep treatments consisted of no cultivation, weekly cultivations (for 5 WAP), cultivations at 2 and 5 WAP only, or cultivation at 5 WAP only. Hand-weeding treatments were no hand-weeding or hand-weeding of the entire plot. There were numerous significant interactions among tine and sweep treatments on weed control. Initial weed species composition greatly affected cultivation effects on overall weed control. Tine cultivation was most effective at controlling annual grass weeds. Sweep cultivation was effective at reducing weeds (Amaranthus spp., southern crabgrass, and Florida pusley), but primarily when tine cultivation was absent. Hand-weeding significantly improved weed control for every weed species every year. Additionally, inclusion of certain cultivation regimes significantly reduced the hand-weeding time requirement over the control. However, cultivation treatments did not improve pod yield or grade in any year. The most significant benefit in cultivation from these data is in the reduction in hand-weeding requirements. Based on this research, a regime consisting of weekly tine cultivations for 5 WAP, combined with two timely sweep cultivations provided the best overall balance of weed control and minimization of hand-weeding. Hand-weeding is the most critical weed control method, followed by tine cultivation, and finally sweep cultivation, which primarily served as an aid in the event of missed tine cultivations or failure.


1996 ◽  
Vol 23 (1) ◽  
pp. 9-14 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
William K. Vencill

Abstract Field studies conducted in 1992 at Tifton and Midville, GA and in 1993 at Attapulgus, GA evaluated imazethapyr systems for weed control, peanut (Arachis hypogaea L.) injury, and yield. The standard of imazethapyr + paraquat early postemergence (EPOST) followed by paraquat + 2,4-DB + bentazon postemergence (POST) controlled at least 87% of bristly starbur, prickly sida, smallflower morningglory, and yellow nutsedge and the peanut crop yielded 3310 kg/ha. This standard controlled Florida beggarweed (46 and 83% control) and sicklepod (74 and 88% control) in 1992 and 1993; respectively. Imazethapyr PPI at 36 and 72 g/ha controlled bristly starbur 78 and 100%, respectively, and controlled prickly sida and smallflower morningglory at least 90%. Imazethapyr PPI at 36 and 72 g/ha controlled yellow nutsedge 83 and 80%, respectively. Imazethapyr did not control sicklepod or Florida beggarweed. Control of these two species and high peanut yields required a POST application of a paraquat mixture.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason Ferrell ◽  
Gregory MacDonald ◽  
Pratap Devkota

Successful weed control in small grains involves using good management practices in all phases of production. In Florida, winter weeds compete with small grains for moisture, nutrients, and light, with the greatest amount of competition occurring during the first six to eight weeks after planting. Weeds also cause harvest problems the following spring when the small grain is mature. This 4-page publication discusses crop competition, knowing your weeds, and chemical control. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Pratap Devkota

Successful weed control in peanuts involves use of good management practices in all phases of peanut production. This 11-page document lists herbicide products registered for use in Florida peanut production, their mode of actions group, application rate per acre and per season, and reentry interval. It also discusses the performance of these herbicides on several weeds under Florida conditions. Written by J. A. Ferrell, G. E. MacDonald, and P. Devkota, and published by the UF/IFAS Agronomy Department, revised May 2020.


Author(s):  
A.J. Cresswell

This paper, as well as being a testimonial to the benefit the writer has received from the Grassland Association, shows how the knowledge of scientists has been used to increase lucerne seed yields by methods of growing resistant cultivars especially for seed production as opposed to growing for hay, silage or grazing. It shows how new cultivars can be multiplied quickly by growing two crops in one year, one in each hemisphere, by using low seeding rates, wide plant spacing and very good weed control. Increased flowering of the crop has been achieved by the use of boron and the choice of time of closing; better pollination has been achieved by the use of more efficient bees - two varieties of which have been imported from North America. Weed and insect pest control and the use of a desiccant at harvest are contributing to a four-fold increase in seed yield, which should double again soon,


2003 ◽  
Vol 46 ◽  
pp. 12-16 ◽  
Author(s):  
L. R. Fisher ◽  
W. D. Smith ◽  
J. W. Wilcut

Sign in / Sign up

Export Citation Format

Share Document