AMPLIFIED RIBOSOMAL DNA RESTRICTION ANALYSIS (ARDRA) BAKTERI DENGAN POTENSI ANTIMIKROB YANG BERASOSIASI DENGAN SPONS Jaspis sp.

2010 ◽  
Vol 9 (1) ◽  
Author(s):  
Hermawaty Abubakar

<p><em>Sponges</em><em> are one of the components that compose coral reef which have a potential bioactive substance that has not been utilized. Sponges are generally able to survive in marine waters were nutrients are poor because of associations with other organisms, especially bacteria. This study aimed to isolate and characterize bacteria (endosymbiont and ectosimbion) that produce antimicrobial compounds, and analyze genetic diversity based on Amplified Ribosomal DNA Restriction Analysis (ARDRA). The results of isolation obtained 138 bacterial isolates, which are 70 endofit isolates and 68 surfaces isolates respectively. The results obtained, based on antimicrobial test, was 32 bacterial isolates (45.71%) of the total bacterial isolates that have endofit antimicrobial activity, whereas on the surface bacteria, 20 bacterial isolates (29.41%) of the total surface of the bacterial isolates also have antimicrobial activity. Genetic diversity was carried out on 30 isolates that has the best antimicrobial activity. Amply</em><em>fi</em><em>cation of 16S rRNA gene is done using specific primers, 63f and 1387r. The profile of 16S rRNA gene band shows a </em><em>high </em><em>diversity, which is generated after cutting with three restriction enzymes </em><em>i.e.</em><em> </em><em>RsaI</em><em>, HaeIII and HinfI. The three restriction enzymes have different cuts and properties. Construction of phylogenetic trees based on analysis of Amplified Ribosomal DNA restriction, grouped 30 isolates from the sponge Jaspis sp. which have a microbial activity on seven filotipe. This grouping is based on the similarities cuts of sites of each isolate after restriction by three different restriction enzymes.</em></p>

2021 ◽  
Vol 11 (13) ◽  
pp. 5801
Author(s):  
Christina Tsadila ◽  
Marios Nikolaidis ◽  
Tilemachos G. Dimitriou ◽  
Ioannis Kafantaris ◽  
Grigoris D. Amoutzias ◽  
...  

It has been suggested that microorganisms present in honey are a potential source of antimicrobial compounds. This study aimed to isolate and characterize bacteria from 46 Greek honey samples of diverse botanical and geographical origin and to determine whether these bacteria demonstrate antibacterial activity against five important nosocomial and foodborne pathogens. In total, 2014 bacterial isolates were obtained and screened for antibacterial activity. Overall, 16% of the isolates inhibited the growth of Staphylococcus aureus, 11.2% inhibited the growth of Pseudomonas aeruginosa and Acinetobacter baumannii, 10.2% inhibited the growth of Salmonella Typhimurium and 12.4% of the isolates affected the growth of Citrobacter freundii. In total, 316 isolates that inhibited the growth of more than two of the tested pathogens were grouped by restriction fragment length polymorphisms (RFLP) analysis of the 16S rRNA gene amplicon. Fifty of them were identified by 16S rRNA gene sequencing. The majority, 62% of the isolates, belonged to the genus Bacillus. Only 10% of the isolates were identified as Gram-negative bacteria. Furthermore, in several bacterial isolates, genes encoding polyketide synthases and nonribosomal peptide synthetases that catalyze the biosynthesis of secondary metabolites which might contribute to the exerted antimicrobial activity, were detected. This study demonstrates that honey microbiota exerts antimicrobial activity and is a putative source of secondary metabolites against important nosocomial and food pathogens that warrants further investigation.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12097
Author(s):  
Yaowanoot Promnuan ◽  
Saran Promsai ◽  
Wasu Pathom-aree ◽  
Sujinan Meelai

This study aimed to investigate cultivable actinomycetes associated with rare honey bee species in Thailand and their antagonistic activity against plant pathogenic bacteria. Actinomycetes were selectively isolated from the black dwarf honey bee (Apis andreniformis). A total of 64 actinomycete isolates were obtained with Streptomyces as the predominant genus (84.4%) followed by Micromonospora (7.8%), Nonomuraea (4.7%) and Actinomadura (3.1%). All isolates were screened for antimicrobial activity against Xanthomonas campestris pv. campestris, Pectobacterium carotovorum and Pseudomonas syringae pv. sesame. Three isolates inhibited the growth of X. campestris pv. campestris during in vitro screening. The crude extracts of two isolates (ASC3-2 and ASC5-7P) had a minimum inhibitory concentration (MIC) of 128 mg L−1against X. campestris pv. campestris. For isolate ACZ2-27, its crude extract showed stronger inhibitory effect with a lower MIC value of 64 mg L−1 against X. campestris pv. campestris. These three active isolates were identified as members of the genus Streptomyces based on their 16S rRNA gene sequences. Phylogenetic analysis based on the maximum likelihood algorithm showed that isolate ACZ2-27, ASC3-2 and ASC5-7P were closely related to Streptomyces misionensis NBRC 13063T (99.71%), Streptomyces cacaoi subsp. cacaoi NBRC 12748T (100%) and Streptomyces puniceus NBRC 12811T (100%), respectively. In addition, representative isolates from non-Streptomyces groups were identified by 16S rRNA gene sequence analysis. High similarities were found with members of the genera Actinomadura, Micromonospora and Nonomuraea. Our study provides evidence of actinomycetes associated with the black dwarf honey bee including members of rare genera. Antimicrobial potential of these insect associated Streptomyces was also demonstrated especially the antibacterial activity against phytopathogenic bacteria.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2761-2765 ◽  
Author(s):  
Daniela Flôres ◽  
Ana Paula de Oliveira Amaral Mello ◽  
Thays Benites Camargo Pereira ◽  
Jorge Alberto Marques Rezende ◽  
Ivan Paulo Bedendo

Erigeron sp. plants showing symptoms of witches' broom and stunting were found near orchards of passion fruit in São Paulo state, Brazil. These symptoms were indicative of infection by phytoplasmas. Thus, the aim of this study was to detect and identify possible phytoplasmas associated with diseased plants. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR conducted with the primer pairs P1/Tint and R16F2n/16R2. Amplification of genomic fragments of 1.2 kb from the 16S rRNA gene confirmed the presence of phytoplasma in all symptomatic samples. The sequence identity scores between the 16S rRNA gene of the phytoplasma strain identified in the current study and those of previously reported ‘Candidatus Phytoplasma fraxini’-related strains ranged from 98 % to 99 % indicating the phytoplasma to be a strain affiliated with ‘Candidatus Phytoplasma fraxini’. The results from a phylogenetic analysis and virtual RFLP analysis of the 16S rRNA gene sequence with 17 restriction enzymes revealed that the phytoplasma strain belongs to the ash yellows phytoplasma group (16SrVII); the similarity coefficient of RFLP patterns further suggested that the phytoplasma represents a novel subgroup, designated 16SrVII-D. The representative of this new subgroup was named EboWB phytoplasma (Erigeron bonariensis Witches' Broom).


2002 ◽  
Vol 92 (3) ◽  
pp. 451-459 ◽  
Author(s):  
S.I. Pavlova ◽  
A.O. Kilic ◽  
S.S. Kilic ◽  
J.-S. So ◽  
M.E. Nader-Macias ◽  
...  

2000 ◽  
Vol 66 (3) ◽  
pp. 1098-1106 ◽  
Author(s):  
Steven P. Djordjevic ◽  
Wendy A. Forbes ◽  
Lisa A. Smith ◽  
Michael A. Hornitzky

ABSTRACT Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI,CfoI, AluI, FokI, andRsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in theHinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI,FokI, and HinfI differentiated P. alvei from the phylogenetically closely related speciesPaenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymesCfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity inP. alvei isolates may be a reflection of adaptation to the special habitats in which they originated.


1992 ◽  
Vol 100 (1-3) ◽  
pp. 59-65 ◽  
Author(s):  
Paul A. Rochelle ◽  
John C. Fry ◽  
R. John Parkes ◽  
Andrew J. Weightman

1999 ◽  
Vol 65 (7) ◽  
pp. 3084-3094 ◽  
Author(s):  
Flore Molouba ◽  
Jean Lorquin ◽  
Anne Willems ◽  
Bart Hoste ◽  
Eric Giraud ◽  
...  

ABSTRACT We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica,A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previous isolates from variousAeschynomene species, were studied for host-specific nodulation within the genus Aeschynomene, also revisiting cross-inoculation groups described previously by D. Alazard (Appl. Environ. Microbiol. 50:732–734, 1985). The whole collection ofAeschynomene nodule isolates was screened for synthesis of photosynthetic pigments by spectrometry, high-pressure liquid chromatography, and thin-layer chromatography analyses. The presence ofpuf genes in photosyntheticAeschynomene isolates was evidenced both by Southern hybridization with a Rhodobacter capsulatus photosynthetic gene probe and by DNA amplification with primers defined from photosynthetic genes. In addition, amplified 16S ribosomal DNA restriction analysis was performed on 45 Aeschynomeneisolates, including strain BTAi1, and 19 reference strains fromBradyrhizobium japonicum, Bradyrhizobium elkanii, and other Bradyrhizobium sp. strains of uncertain taxonomic positions. The 16S rRNA gene sequence of the photosynthetic strain ORS278 (LMG 12187) was determined and compared to sequences from databases. Our main conclusion is that photosynthetic Aeschynomene nodule isolates share the ability to nodulate particular stem-nodulated species and form a separate subbranch on the Bradyrhizobium rRNA lineage, distinct from B. japonicum and B. elkanii.


2005 ◽  
Vol 71 (1) ◽  
pp. 460-466 ◽  
Author(s):  
Mar�a Vald�s ◽  
N�stor-Octavio P�rez ◽  
Paulina Estrada-de los Santos ◽  
Jes�s Caballero-Mellado ◽  
Juan Jos� Pe�a-Cabriales ◽  
...  

ABSTRACT Based on partial 16S sequences, we previously described a novel group of nonsymbiotic, acetylene reduction activity-positive actinomycetes which were isolated from surface-sterilized roots of Casuarina equisetifolia growing in Mexico. An amplified rRNA restriction analysis confirmed that these actinomycetes are distinct from Frankia, a finding substantiated by a 16S rRNA gene phylogenetic analysis of two of the Mexican isolates. Further support for these actinomycetes being separate from Frankia comes from the very low DNA-DNA homology that was found. Nevertheless, the Mexican isolates may be diazotrophs based not only on their ability to grow in N-free medium and reduce acetylene to ethylene but also on the results from 15N isotope dilution analysis and the finding that a nifH gene was PCR amplified. A comparison of the nifH sequences from the various isolates showed that they are closely related to nifH from Frankia; the similarity was 84 to 98% depending on the host specificity group. An analysis of complete 16S rRNA gene sequences demonstrated that the two strains analyzed in detail are most closely related to actinobacteria in the Thermomonosporaceae and the Micromonosporaceae.


Sign in / Sign up

Export Citation Format

Share Document