scholarly journals Implementasi Algoritma AES Untuk Pengamanan Login Dan Data Customer Pada E-Commerce Berbasis Web

2020 ◽  
Vol 7 (1) ◽  
pp. 148
Author(s):  
Laila Mustika

In the field of E-Commerce website security is very necessary considering that many cyber crimes target commercial websites. Some that need to be secured are logins, because logins are confidential and important to access a website that has account access rights. In addition, customer data also needs to be secured data from people who do not have access rights, to prevent and avoid data changes and destruction. If customer data is known by parties who do not have access rights, the data can be misused and can lead to fraud cases. Therefore an algorithm is needed to secure the website. One of the algorithms that can be used to secure a website is cryptography. In cryptography messages or important and confidential data are encrypted and described using a symmetric key or asymmetric key that is only known by the authorities. There are several methods of cryptographic algorithm that can be applied to it, one of them is the AES (Advanced Encryption Standard) method. AES algorithm has a block length of 128 bits and is able to support key lengths of 128, 192, and 256bit, besides that AES algorithm is cheaper in cost and more easily implemented in small memory. The results of the application of the AES Algorithm make the website safer and it is hoped that customers will increase with increased website security and customer trust

Cryptography plays a major role in the network security. In order to secure the data one must do encryption of the original message. In this paper, the design and analysis of high speed and high performance BLOWFISH algorithm is implemented in VHDL coding and compared with AES (Advanced Encryption Standard) algorithm. The BLOWFISH algorithm involves the process of giving the data and key as input to the encryption block. BLOWFISH encryption algorithm is designed and programmed in VHDL coding. Then it is implemented in Xilinx 10.1. This research is carried in the following steps: designing of encryption algorithm, writing VHDL code, simulating the code on “ModelSim altera 6.5e”, synthesizing and implementing the code using Xilinx’s ISE 10.1.This research aims in developing flexible and technology independent architectures in the areas of VPN software, file compression, public domain software such as smart cards, etc. Also presents the comparison of BLOWFISH and AES algorithms. Experimental results show that BLOWFISH algorithm runs faster than AES algorithm while both of them consume almost the same Power.


In this paper, we propose a novel cryptographic algorithm namely Symmetric Random Biometric key (SRBK) algorithm. The key for this SRBK algorithm is obtained from two biometric features namely ear and lip. The key generated are flexible and can be altered based on the type of algorithm used. We also consider Advanced encryption standard (AES) algorithm for comparison with SRBK algorithm and finally it was proved that SRBK algorithm is better than AES algorithm on selected parameters.


Cryptography ◽  
2020 ◽  
pp. 129-141
Author(s):  
Filali Mohamed Amine ◽  
Gafour Abdelkader

Advanced Encryption Standard is one of the most popular symmetric key encryption algorithms to many works, which have employed to implement modified AES. In this paper, the modification that has been proposed on AES algorithm that has been developed to decrease its time complexity on bulky data and increased security will be included using the image as input data. The modification proposed itself including alteration in the mix column and shift rows transformation of AES encryption algorithm, embedding confusion-diffusion. This work has been implemented on the most recent Xilinx Spartan FPGA.


Author(s):  
Filali Mohamed Amine ◽  
Gafour Abdelkader

Advanced Encryption Standard is one of the most popular symmetric key encryption algorithms to many works, which have employed to implement modified AES. In this paper, the modification that has been proposed on AES algorithm that has been developed to decrease its time complexity on bulky data and increased security will be included using the image as input data. The modification proposed itself including alteration in the mix column and shift rows transformation of AES encryption algorithm, embedding confusion-diffusion. This work has been implemented on the most recent Xilinx Spartan FPGA.


Author(s):  
P. B. Mane ◽  
A. O. Mulani

Now a day digital information is very easy to process, but it allows unauthorized users to access this information. To protect this information from unauthorized access, Advanced Encryption Standard (AES) is one of the most frequently used symmetric key cryptography algorithm. Main objective of this paper is to implement fast and secure AES algorithm on reconfigurable platform. In this paper, AES algorithm is designed with the aim to achieve less power consumption and high throughput. Keys are generated using MATLAB and remaining algorithm is designed using Xilinx SysGen, implemented on Nexys4 and simulated using Simulink. Synthesis result shows that it consumes 121 slice registers and its operating frequency is 1102.536 MHz. Throughput of the overall system is 14.1125 Gbps.


2018 ◽  
Vol 5 (4) ◽  
pp. 48-60
Author(s):  
Manmohan Lakhera ◽  
Manmohan Singh Rauthan

The biometric template protection technique provides the security in many authentication applications. Authentication based on biometrics has more advantages over traditional methods such as password and token-based authentication methods. The advantage of any biometric-based authentication system over a traditional one is that the person must physically be present at that place while recognizing him. So, it is essential to secure these biometrics by combining these with cryptography. In the proposed algorithm, the AES algorithm is used for securing the stored and transmitted biometric templates using helping data. The helping data is a variable type of data which is changed at every attempt for registration. The final symmetric key AES algorithm is a combination of helping data and actual symmetric keys of the AES algorithm. The experimental analysis shows that a brute force attack takes a long time to recover the original biometric template from cipher biometric template. So, the proposed technique provides sufficient security to stored biometric templates.


2018 ◽  
Vol 3 (1) ◽  
pp. 61-70
Author(s):  
Rajamohan Parthasarathy ◽  
◽  
Seow Soon Loong ◽  
Preethy Ayyappan ◽  
◽  
...  

The AES algorithm is a symmetric block cipher that can encrypt, (encipher), and decrypt, (decipher), information. Encryption converts data to an unintelligible form called cipher-text. Decryption of the cipher-text converts the data back into its original form, which is called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. The National Institute of Standards and Technology, (NIST), solicited proposals for the Advanced Encryption Standard, (AES). The AES is a Federal Information Processing Standard, (FIPS), which is a cryptographic algorithm that is used to protect electronic data. Advanced Encryption Standard (AES), specifying an Advanced Encryption Algorithm to replace the Data Encryption standard (DES) the Expired in 1998. NIST has solicited candidate algorithms for inclusion in AES, resulting in fifteen official candidate algorithms of which Rijndael was chosen as the Advanced Encryption Standard. Some of these implementations are optimized for speed, some for area, some for configurability, and some for low-power applications. This is carried out in the Cadence Tool with NC simvision software.


2018 ◽  
Vol 5 (1) ◽  
pp. 80
Author(s):  
Aji Purwinarko ◽  
Wahyu Hardyanto

Nowadays, everything is within our grasp and with the mobile phones become easier. Its use is not limited to calls and SMS but has become a tool that can be used to serve business transactions, banking, academic of data through mobile applications. Tus, the security of authentication in the mobile application needs to be improved to avoid a hacker attack. This article presents an authentication in the mobile application to the server using a hybrid of cryptographic algorithm Advanced Encryption Standard (AES) and Blowfish. AES and Blowfish is a symmetric key algorithm is very fast and powerful. With the utilization of a large block size of AES and Blowfish to encrypt keys, AES security will be much more robust and complicated to attacked. So, it will be difficult for hackers to perform Man in the Middle (MitM) attacks.


Author(s):  
Meenakshi R. K ◽  
A. Arivazhagan

<p>The demand of satellite communication, the security algorithms are to be designed in the board. The information from the satellite to the ground is required the data security with the cryptographic algorithms. Advanced encryption standard (AES) is one of the promising cryptographic algorithms for the terrestrial communication. In this paper, the encryption and decryption is mainly focused on the cipher block chaining (CBC) mode for achieving the high secured data transmission. For efficient data transmission, the AES algorithm is implemented by using CBC mode. The proposed work is designed by using RTL modeling and also the minimum numbers of logical elements are used for implementation. </p>


Security of data (text, audio, and images) is becoming more complex with the increment in its amount. In order to upsurge the reliability, the captcha (Completely Automated Public Turing test to tell Computers and Humans Apart) is used to ensure authenticity. In contrast, even these captchas can be hacked and security can be easily impeached, aim of these captchas is to identify if the user is genuine or else if it is just a robot trying to spam the system. This paper presents auxiliary hybridization of AES and Blowfish cryptographic algorithms for image encipherment and decipherment. Here, AES is using Blowfish as its subroutine where Blowfish encrypts and decrypts the AES encoded image. This is then handed to AES for second level decryption. Here the image which is to be encrypted is applied to AES algorithm, its output is further used as an input for Blowfish algorithm. Output of this doubly encrypted image is then decrypted in the reverse order of encipherment. This auxiliary hybridization adds security to the image rendering it the capacity to become useful in highly important organizations. Private key cryptography uses single secret key at both, the sender and the receiver end. Using symmetric key cryptographic algorithm for this process makes the complete process fast and more secure in comparison to when asymmetric cryptographic algorithms are used for the same purpose. Moreover, symmetric key cryptographic algorithms are more suitable for larger files and images. These also help in maintaining the confidentiality of the data.


Sign in / Sign up

Export Citation Format

Share Document