scholarly journals Composition of the collection of primitive cultivated species within the Solanum L. section Petota Dumort. and contemporary trends in their research

2020 ◽  
Vol 181 (3) ◽  
pp. 190-202
Author(s):  
E. V. Rogozina ◽  
A. A. Gurina

The diversity of potato genetic resources in the VIR genebank harbors one of the world’s first collections of primitive cultivated species. These accessions are native potato varieties cultivated by the indigenous population of South America. The oldest accessions in the collection are traced back to 1927. Approximately one fifth of the collection (106 accessions out of 573) is the unique material procured by VIR’s collecting missions to Bolivia, Colombia, Ecuador, and Peru. According to S. Bukasov’s potato classification, the diversity of South American highland potatoes explored by VIR’s collectors belongs to spp. Solanum ajanhuiri Juz. et Buk., S. × chaucha Juz. et Buk., S. mammilliferum Juz. et Buk., S. phureja Juz. et Buk., S. rybinii Juz. et Buk., S. goniocalyx Juz. et Buk., S. stenotomum Juz. et Buk., S. tenuifilamentum Juz. et Buk., S.× juzepczukii Buk., and S. × curtilobum Juz. et Buk. Within this group of species, S. × ajanhuiri, S. phureja and S. stenostomum are the closest in their characteristics to ancient domesticated forms of tuber-bearing Solanum spp. This publication is an analytical review of the current composition of the primitive cultivated potato species collection and the results of its earlier studies. Ecogeographic descriptions of the sites native for cultivated potatoes and information on the sources of the accessions are presented. A large-scale evaluation of primitive cultivated potato accessions by a set of characters, carried out in field and laboratory experiments, uncovers their breeding potential and serves as the primary information platform for further indepth research. Studying S. phureja and closely related cultivated potato species is important for finding solutions of fundamental problems in plant biology. The data arrays accumulated today would facilitate targeted selection among accessions to identify most promising ones for molecular genetic studies into the gene pool diversity of potato species.

Author(s):  
V. M. Kosolapov ◽  
N. N. Kozlov ◽  
I. А. Klimenko ◽  
V. N. Zolotarev

The methods of genetic identification of forage crops varieties and forms have significant scientific and practical importance in breeding and seed multiplication, in protection of author’s rights. At the current moment molecular markers on the base of DNA-polymorphism have been applied widely for these aims. This analytical review examines the possibilities and the prospects of application the different DNA-analysis methods for assessment of forage crops genetic diversity and for development the molecular-genetic passports of breeding achievements. The objective estimation of varieties structure and presence impurities is a necessary condition for improving the methodical approaches in approbation of crops and for decision the problems of timely variety-seed renovation and its systematic replacement. The system of DNA markers that registered in genetic passport will enable to keep the initial genetic structure of variety and to maintain it in production process during long time without fluctuations of agronomic important characteristics and properties. This factor is especially valuable for development the primary seed multiplication.


2021 ◽  
pp. 51-94
Author(s):  
Iris Edith Peralta ◽  
Andrea Martina Clausen ◽  
Cinthya Zorrilla ◽  
Mercedes Ames ◽  
Ariana Digilio ◽  
...  

2019 ◽  
Vol 15 (5) ◽  
pp. 1845-1859 ◽  
Author(s):  
Ignacio A. Jara ◽  
Antonio Maldonado ◽  
Leticia González ◽  
Armand Hernández ◽  
Alberto Sáez ◽  
...  

Abstract. Modern precipitation anomalies in the Altiplano, South America, are closely linked to the strength of the South American summer monsoon (SASM), which is influenced by large-scale climate features sourced in the tropics such as the Intertropical Convergence Zone (ITCZ) and El Niño–Southern Oscillation (ENSO). However, the timing, direction, and spatial extent of precipitation changes prior to the instrumental period are still largely unknown, preventing a better understanding of the long-term drivers of the SASM and their effects over the Altiplano. Here we present a detailed pollen reconstruction from a sedimentary sequence covering the period between 4500 and 1000 cal yr BP in Lago Chungará (18∘ S; 4570 m a.s.l.), a high-elevation lake on the southwestern margin of the Altiplano where precipitation is delivered almost exclusively during the mature phase of the SASM over the austral summer. We distinguish three well-defined centennial-scale anomalies, with dry conditions between 4100–3300 and 1600–1000 cal yr BP and a conspicuous humid interval between 2400 and 1600 cal yr BP, which resulted from the weakening and strengthening of the SASM, respectively. Comparisons with other climate reconstructions from the Altiplano, the Atacama Desert, the tropical Andes, and the southwestern Atlantic coast reveal that – unlike modern climatological controls – past precipitation anomalies at Lago Chungará were largely decoupled from north–south shifts in the ITCZ and ENSO. A regionally coherent pattern of centennial-scale SASM variations and a significant latitudinal gradient in precipitation responses suggest the contribution of an extratropical moisture source for the SASM, with significant effects on precipitation variability in the southern Altiplano.


2015 ◽  
Vol 11 (7) ◽  
pp. 20150349 ◽  
Author(s):  
Alexander Van Nynatten ◽  
Devin Bloom ◽  
Belinda S. W. Chang ◽  
Nathan R. Lovejoy

Incursions of marine water into South America during the Miocene prompted colonization of freshwater habitats by ancestrally marine species and present a unique opportunity to study the molecular evolution of adaptations to varying environments. Freshwater and marine environments are distinct in both spectra and average intensities of available light. Here, we investigate the molecular evolution of rhodopsin, the photosensitive pigment in the eye that activates in response to light, in a clade of South American freshwater anchovies derived from a marine ancestral lineage. Using likelihood-based comparative sequence analyses, we found evidence for positive selection in the rhodopsin of freshwater anchovy lineages at sites known to be important for aspects of rhodopsin function such as spectral tuning. No evidence was found for positive selection in marine lineages, nor in three other genes not involved in vision. Our results suggest that an increased rate of rhodopsin evolution was driven by diversification into freshwater habitats, thereby constituting a rare example of molecular evolution mirroring large-scale palaeogeographic events.


Sign in / Sign up

Export Citation Format

Share Document