scholarly journals The effect of crop rotation on performance and qualitative characteristics of sugar beet

2020 ◽  
Vol 12 (3) ◽  
pp. 711-718
Author(s):  
Mohammad R. ORAZIZADEH ◽  
Mostafa HOSSEINPOUR ◽  
Parviz FASAHAT

Sugar beet and sugarcane are two major crops for sugar extraction throughout the world. However, the sugar beet importance is not just about sugar production but it also plays an important role in crop rotation and increased productivity in various industries as well as livestock feed. In this study the long-term (2009-16) field trial effect of alfalfa (4 years)-winter wheat (1 year)–fallow (1year)-sugar beet rotation on yield and quality parameters of sugar beet were evaluated for two consecutive rotations. The field trials were carried out at single location in Karaj, Iran, using randomized complete block design with four replications. Analysis of variance showed that the seasonal factors influenced different traits. In the first and second rotations, the root yield ranged from about 56.5 to 83.2 and 61.4 to 77.8 t ha-1, respectively with significant difference among cultivars in the first rotation. However, no significant difference was observed among both rotations in terms of root yield. Same results were obtained for sugar yield in both rotations which illustrates the stability of the above-mentioned traits. Except for sugar content, significant difference was observed among other traits in both rotations. We show for the first time the effect of completing two rotation sequences on sugar beet performance and quality for decision making into a continual expansion/development of crop cultivation.

2020 ◽  
pp. 554-561
Author(s):  
Christine Kenter ◽  
Philipp Götze ◽  
Erwin Ladewig

In Germany, the guidelines for variety trials with sugar beet require plots with 80–100 beets for a representative estimation of root yield. If possible, one or two head rows shall be planted perpendicular to the plots to avoid border effects at open alleys. The optimum sample size was determined in the 1970s and the effect of head rows has not yet been systematically studied. The aim of the present study was to quantify the effects of sample size and head rows on the precision of yield and quality data of sugar beet. Two series of field trials were carried out in Germany in 2016–2017. In the series “sample size”, conducted at 9 environments, samples of 30, 60, 90 and 120 beets were compared. With increasing number of beets, coefficients of variation and least significant differences for yield and quality parameters decreased, especially when the sample size was increased from 30 to 60 beets. Compared to the current standard of 90 beets, the precision of samples with 60 beets was similar for sugar content but lower for root yield. It is concluded that the current sample size should not be reduced. In the series “head rows”, ten variety trials were conducted without and with head rows. The precision of trials with and without head rows did not differ in general. The effect of head rows on least significant differences for root yield and sugar content was not consistent among environments. With head rows, absolute root yield (tonnes per ha) was lower and sugar content was higher than without, but the rank of varieties in relative white sugar yield remained unchanged. Sugar beet varieties can thus be tested in trials with and without head rows without losing precision, even within the same trial series.


2021 ◽  
Vol 181 (4) ◽  
pp. 93-101
Author(s):  
D. V. Sokolova

Background. While working with such cross-pollinated crops as sugar beet, the greatest problem is the fixation of valuable genotypes. Using apomixis to produce breeding material helps to accelerate the breeding process and save the desired combination of genes.Materials and methods. The research objects were 110 accessions of sugar beet from the VIR collection. Field experiments and assessments of the resistance to Cercospora leaf spot, monogermity, and non-bolting were performed according to VIR’s guidelines in 2016–2018 at Pushkin and Pavlovsk Laboratories of VIR and Maikop Experiment Station of VIR. The sugar level in roots was measured using an optical refractometer.Results. A comprehensive study of sugar beet accessions resulted in the development of apomictic lines with cytoplasmic male sterility, followed by an evaluation of their economically important characters. An extremely rare occurrence of biotypes with the 0-type sterility (less than 0.5%) was observed in the population. The seeds obtained from apomixis-prone lines demonstrated a significant difference during inbreeding from the seeds of fertile inbred genotypes: no inbreeding depression was observed in apomictic lines. Lines combining sterility and monogermity in their genotype were produced. Testing parent accessions and apomictic forms did not reveal significant differences in the sugar content and root yield, so the resulting forms can be efficiently used in future breeding programs.Conclusion. Using apomixis to develop sugar beet lines helped to fixate the sugar content level, biennial plant development cycle, and Cercospora leaf spot resistance. Thus, apomixis is promising for ensuring maternal inheritance and preserving the desired combination of genes in sugar beet, thereby accelerating the breeding process. 


2012 ◽  
pp. 102-109
Author(s):  
Suzana Kristek ◽  
Andrija Kristek ◽  
Dragana Kocevski ◽  
Antonija K. Jankovi ◽  
Dražen Juriši

The experiment was set up on two types of the soil: Mollic Gleysols (FAO, 1998) and Eutric Cambisols where the presence of pathogenic fungi – sugar beet root decay agent – Rhizoctonia solani has been detected since 2005. In a two year study (2008, 2009), the experiment was set up by completely randomized block design in 4 repetitions and 16 different variants. Two beet varieties, Belinda, sensitive to pathogenic fungi R. solani, and Laetitia, tolerant to pathogenic fungi R. solani), were grown. The microbiological preparation BactoFil was applied in different amounts in autumn and spring. In addition, the nitrogen fertilizer application, based on the results of soil analysis, was varied. The following parameters were tested: amount of infected and decayed plants, root yield, sugar content, sugar in molasses and sugar yield. The best results were obtained by applying the microbiological preparation BactoFil, and by 30% reduced nitrogen fertilizer application. Preparation dosage and time of application depended on soil properties.


2015 ◽  
pp. 95-103 ◽  
Author(s):  
Dirk P. Vermeulen

The technological beet quality has been always important for the processors of sugar beet. An investigation into the development of the beet quality in the Netherlands since 1980 has shown that beet quality has improved significantly. Internal quality parameters that are traditionally determined in the beet laboratory, i.e. sugar content, Na, K and -aminoN, all show an improving trend over the years. In the factories, better beet quality has led to lower lime consumption in the juice purification and significantly higher thick juice purity. In 2013, Suiker Unie introduced the serial analysis of the glucose content in beet brei as part of the routine quality assessment of the beet. The invert sugar content is subsequently calculated from glucose content with a new correlation. The background, the trial phase and the first experiences with the glucose analyzer are discussed.


2008 ◽  
Vol 53 (2) ◽  
pp. 83-90
Author(s):  
Goran Jacimovic ◽  
Branko Marinkovic ◽  
Jovan Crnobarac ◽  
Darinka Bogdanovic ◽  
Lazar Kovacev ◽  
...  

Researches, which have lasted for two years, were carried out on long-term trial field at Rimski Sancevi, Novi Sad, Serbia. In this trial, the eight fertilization variants of N, P2O5 and K2O increased amounts were studied. Sugar beet root and tops yields were determined, as well as the elements of technological sugar beet root quality. Based on these results, percentage of sugar utilization and refined sugar yield was defined. In the spring, before applying of N fertilizer, amount of nitrate nitrogen in the soil and its influence on yield and quality was determined. The highest root yield in 2002 was produced at the variant N100 P150 K150, and in 2003 at the variant N150 P150 K150. However, in both years, referring to the variant N100 P100 K100, the differences were not statistically significant. Increasing of nitrogen amounts had negative effects on refined sugar yield. Amounts of NO3-N in the soil in spring, before sugar beet sowing, in 2002 had significant influence on root yield and refined sugar yield. In the year 2003, which was highly dry, high correlation ratio were gained between amounts of NO3-N in the soil and root quality parameters, but it wasn't significant between nitrogen amounts and root and refined sugar yield.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1364-1370 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Erik J. Wenninger ◽  
Imad A. Eujayl

Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield-limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. The length of efficacy of these insecticides is poorly understood; therefore, field experiments were conducted with the seed treatment Poncho Beta (clothianidin at 60 g a.i. + beta-cyfluthrin at 8 g a.i. per 100,000 seed) and foliar treatment Asana (esfenvalerate at 55.48 g a.i./ha). A series of four experiments at different locations in the same field were conducted in 2014 and repeated in a neighboring field in 2015, with four treatments (untreated check, Poncho Beta, Asana, and Poncho Beta + Asana) which were arranged in a randomized complete block design with eight replications. To evaluate efficacy, viruliferous (contain BCTV strains) beet leafhoppers were released 8, 9, 10, or 11weeks after planting for each experiment, which corresponded to 1, 2, 3, and 4 weeks after Asana application. Over both years, in 30 of 32 observation dates for treatments with Poncho Beta and 14 of 16 observation dates for Asana, visual curly top ratings decreased an average of 41 and 24%, respectively, with insecticide treatments compared with the untreated check. Over both years, in eight of eight experiments for treatments with Poncho Beta and six of eight experiments for Asana, root yields increased an average of 39 and 32%, respectively, with treatment compared with the untreated check. Over both years, the Poncho Beta treatments increased estimated recoverable sucrose (ERS) yield by 75% compared with the untreated check for weeks 8 and 9. By week 10, only the Poncho Beta + Asana treatment led to increases in ERS in both years, while the influence of increasing host resistance may have made other treatments more difficult to separate. When considering curly top symptoms, root yield, and ERS among all weeks and years, there was a tendency for the insecticides in the Poncho Beta + Asana treatment to complement each other to improve efficacy.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ivica Stancic ◽  
Jelica Zivic ◽  
Sasa Petrovic ◽  
Desimir Knezevic

This paper analyzes the impact of genes and proportional contribution of parental genotypes on the inheritance of root yield and sugar content in diploid hybrids of sugar beet. The survey included two diploid male-sterile monogerm lines and three single (SC) male-sterile hybrids as maternal components, while three multigerm diploids were used as pollinators. The partitioning of genotypic variance into additive and dominant components was performed by half sibling (HS) and full sibling (FS) covariance. The proportional contribution of individual components of crossbreeding (lines, testers, and interactions) was exhibited in the expression of certain characteristics of F1generation. Genotypic variance components showed a significant effect of nonadditive gene action (dominance) in the inheritance of root yield and sugar content, while the additive effect of genes was less significant. Maternal components had a greater proportional contribution to root yield, while lines, pollinators, and their interactions had an equal contribution to sugar content.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 143 ◽  
Author(s):  
Yue Hu ◽  
Barb Thomas

Balsam poplar (Populus balsamifera L.) is a transcontinental tree species in North America, making it an ideal species to study intra-specific hybrid vigour as a tool for increasing genetic gain in growth. We tested the hypothesis that intra-specific breeding of disparate populations of balsam poplar would lead to the expression of hybrid vigour and we determined the role of endogenous hormones linked to ecophysiological and growth performance. In September 2009, three field trials were established in Canada (two in Alberta (AB), i.e., Fields AB1 and AB2, and one in Quebec (QC), i.e., Field QC1) in conjunction with Alberta-Pacific Forest Industries Inc. and the Ministry of Forests, Wildlife and Parks, Quebec. Five male parents from each province as well as five female parents from QC and four female parents from AB were used for breeding intra-regional and inter-regional crosses. Based on a significant difference at year six for height and diameter, from the AB1 and AB2 field trials, the AB × QC cross-type was selected for further study. Cuttings from the AB × QC cross-type were grown in a randomized complete block design under near-optimal greenhouse conditions. Families were identified as slow- or fast-growing, and the relationship between hormone levels and growth performance of the genotypes within the families were examined. In late June, after 34 days of growth, internode tissue samples collected from each progeny were analyzed for gibberellic acids, indole-3-acetic acid, and abscisic acid content. Stem volume of two-month-old rooted cuttings, grown under optimal greenhouse conditions, was positively and significantly correlated with the photosynthetic rate, greenhouse growth, and stem volume of 8-year-old field-grown trees (Fields AB1 values: r = 0.629 and p = 0.012; AB2 values: r = 0.619 and p = 0.014, and QC1 values: r = 0.588 and p = 0.021, respectively). We determined that disparate and native populations of balsam poplar can be bred to produce superior progeny with enhanced stem growth traits.


2011 ◽  
Vol 48 (No. 9) ◽  
pp. 418-423
Author(s):  
M. Antunović ◽  
D. Rastija ◽  
M. Pospišil

Aiming at determination differences in leaf and root potassium concentration of diverse sugar beet genotypes as well as its effect on sugar beet root quality and yield. Investigations comprising 15 sugar beet genotypes (five multigerm lines, five hybrids and five monogerm lines) were carried out on two soil types (Calcic luvisol: L-1 and L-3 and Calcic gleysol: L-2 and L-4) during two growing seasons. Root yield of the investigated genotypes on Calcic luvisol (50 t/ha) was higher, than on Calcic gleysol (34 t/ha). In general, multigerm lines were known for the highest leaf potassium concentration (2.75%), lowest root one (3.78 mmol/100 g root), highest sugar content (13.8%) and best root extractable sugar (1.5%). Monogerm lines had the lowest leaf potassium concentration (2.51%), highest root one (4.24 mmol/100 g root), lowest sugar content (12.9%), and the poorest extractable sugar (10.7%). Root yield of the investigated hybrids (48 t/ha) was higher by 16% compared to multigerm lines yield (42 t/ha) and as much as 35% higher compared to monogerm lines (36 t/ha). Sugar beet root potassium was in significantly negative correlation with sugar content at three localities (L-1: r = –0.485**, L-2: r = –0.096, L-3: r = –0.687**, L-4: r = –0.337**) whereas at all four localities it was in negative correlation with extractable sugar (L-1: r = –0.634**, L-2: r = –0.407**, L-3: r = –0.930**, L-4: r = –0.749**). Potassium concentration in sugar beet leaf was in significant positive correlation with sugar content at three localities (L-1: r = 0.382**, L-2: r = 0.231, L-3: r = 0.717**, L-4: r = 0.516**).


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 999-1005
Author(s):  
Mudau N. Fhatuwani ◽  
Makunga P. Nokwanda

Bush tea (Athrixia phylicoides DC.) is a root perennial shrub used as indigenous tea and medicinal tea in South Africa. Thus, concurrent trials were conducted under different growing conditions as follows: in the glasshouse, field planted and wild, naturally grown, to investigate the effects of seasonal harvests and growing environments on carbohydrate reserves and quality parameters of bush tea. Of 50 plants, 25 single plants were allotted to each respective environment in a field and glasshouse conditions—and were arranged in a randomized complete block design. These were then harvested in summer, autumn, winter, and spring, respectively. For the wild bush tea trial, 25 single plants were randomly selected. Selected sugars and starch were quantified together with other quality parameters [total polyphenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and total antioxidant activities). The study revealed that the glucose content of bush tea plant organs was significantly higher during winter, followed by autumn, as compared with the other seasons. Similar fructose and sucrose trends were evident. However, the content of amylopectin was also significantly higher during summer, followed by autumn, compared with the other seasons. In winter, plants exhibited higher amylopectin content when compared with other seasons. No significant differences were found in the amylose content. Both wild and cultivated bush tea plants yielded the highest specific sugars in the study. The phytochemicals present in the leaves of field-grown bush tea and wild bush tea during winter were higher than in those grown in summer, autumn, and spring. No significant difference in tannin contents was observed, irrespective of seasons and growing conditions. Regardless of growing conditions, autumn yielded lower total antioxidant activities using both the DPPH and ferric reducing antioxidant power (FRAP) assays when compared with other seasons. To better resolve the metabolomic data, principal component analysis (PCA) was used and the first principal component showed a strong correlation within all parameters recorded over PC2. Future ecophysiological studies are recommended to establish region- and season-specific metabolomic biomarkers with canonical distinction on beverage, pharmacological, and organoleptic attributes of bush teas.


Sign in / Sign up

Export Citation Format

Share Document