Composite of Strip-shaped ZIF-67 with Polypyrrole: A Conductive Polymer-MOF Electrode System for Stable and High Specific Capacitance

2020 ◽  
Author(s):  
Sajid ur Rehman ◽  
◽  
Rida Ahmed ◽  
Kun Ma ◽  
Shuai Xu ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
pp. 422
Author(s):  
Haihan Zhang ◽  
Li Xu ◽  
Guoji Liu

In this work, nitrogen-doped carbon materials (NCMs) were prepared using aniline-phenol benzoxazine (BOZ) or aniline-cardanol benzoxazine as the carbon precursor and SBA-15 as the hard template. The effects of the carbonization temperature (700, 800, and 900 °C) and different nitrogen contents on the electrochemical properties of carbon materials were investigated. The samples synthesized using aniline-phenol benzoxazine as precursors and treated at 900 °C (NCM-900) exhibited an excellent electrochemical performance. The specific capacitance was 460 F/g at a current density of 0.25 A/g and the cycle stability was excellent (96.1% retention rate of the initial capacitance after 2000 cycles) in a 0.5 M H2SO4 electrolyte with a three-electrode system. Furthermore, NCM-900 also exhibited a high specific capacitance, comparable energy/power densities, and excellent cycling stability using a symmetrical electrode system. The characterization of the morphology and structure of the materials suggests it possessed an ordered mesoporous structure and a large specific surface area. NCM-900 could thus be considered a promising electrode material for supercapacitors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1680
Author(s):  
Luming Li ◽  
Jing Li ◽  
Hongmei Li ◽  
Li Lan ◽  
Jie Deng

A series of MOx (M = Co, Ni, Zn, Ce)-modified lamellar MnO2 electrode materials were controllably synthesized with a superfast self-propagating technology and their electrochemical practicability was evaluated using a three-electrode system. The results demonstrated that the specific capacitance varied with the heteroatom type as well as the doping level. The low ZnO doping level was more beneficial for improving electrical conductivity and structural stability, and Mn10Zn hybrid nanocrystals exhibited a high specific capacitance of 175.3 F·g−1 and capacitance retention of 96.9% after 2000 cycles at constant current of 0.2 A·g−1. Moreover, XRD, SEM, and XPS characterizations confirmed that a small part of the heteroatoms entered the framework to cause lattice distortion of MnO2, while the rest dispersed uniformly on the surface of the carrier to form an interfacial collaborative effect. All of them induced enhanced electrical conductivity and electrochemical properties. Thus, the current work provides an ultrafast route for development of high-performance pseudocapacitive energy storage nanomaterials.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051007
Author(s):  
Jie Dong ◽  
Qinghao Yang ◽  
Qiuli Zhao ◽  
Zhenzhong Hou ◽  
Yue Zhou ◽  
...  

Electrode materials with a high specific capacitance, outstanding reversibility and excellent cycle stability are constantly pursued for supercapacitors. In this paper, we present an approach to improve the electrochemical performance by combining the advantages of both inorganic and organic. Ni-MnO2/PANi-co-PPy composites are synthesized, with the copolymer of aniline/pyrrole being coated on the surface of Ni-doped manganese dioxide nanospheres. The inorganic–organic composite enables a substantial increase in its specific capacitance and cycle stability. When the mass ratio of Ni-MnO2 to aniline and pyrrole mixed monomer is 1:5, the composite delivers high specific capacitance of 445.49[Formula: see text]F/g at a scan rate of 2[Formula: see text]mV/s and excellent cycle stability of 61.65% retention after 5000 cycles. The results indicate that the Ni-MnO2/PANi-co-PPy composites are promising electrode materials for future supercapacitors application.


2021 ◽  
Vol 27 ◽  
pp. 102292
Author(s):  
Wei Zeng ◽  
Qiannan Feng ◽  
Jiongliang Yuan

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2015 ◽  
Vol 44 (19) ◽  
pp. 9221-9229 ◽  
Author(s):  
K. Bhattacharya ◽  
P. Deb

Here, the novel Fe3O4-C hybrid nanocomposite demonstrates high specific capacitance (S.C.) than the pristine Fe3O4nanospheres due to the presence of the highly conducting carbon quantum dots.


Sign in / Sign up

Export Citation Format

Share Document