scholarly journals Automating Road Traffic Monitoring Using Computer Vision

2021 ◽  
Vol 18 (6) ◽  
pp. 74-87
Author(s):  
I. A. Chebykin

The objective of the article is to describe application of computer vision and artificial intelligence technologies for solving the problems of road infrastructure design.The article evaluates the traditional methods of quantitative and qualitative analysis of traffic flows in terms of labour intensity and accuracy using the method of comparative analysis, the advantages and disadvantages of the considered methods are indicated. A new method of traffic flow analysis using unmanned aerial vehicles and computer vision technology based on convolutional neural networks is proposed. The considered method makes it possible to fully automate collection and analysis of data on traffic flows. The article describes the first application of the proposed method when performing transport and economic surveys within the framework of the design of «Northern bypass of the city of Perm». The advantages of the applied method in relation to the traditional ones are described. To implement this project, software was developed for analysing traffic flows using video materials.Further, traffic monitoring is considered, its goals and objectives are described, the necessary functionality of the road traffic monitoring automation system is indicated, the traffic parameters that it should determine are listed. The methodology for implementation of an automated traffic monitoring system based on video materials on a section of the road is considered.A presented project of a traffic monitoring system makes it possible to extend the previously considered approach to the entire road network. Technologies are described that make it possible to implement this system based on video analytics of materials from CCTV cameras. A method for vehicle re-identification is proposed, and the implementation of this method is demonstrated. The method allows building a correspondence matrix of vehicles recorded by CCTV cameras located on different segments of the road network, as well as determining all traffic parameters for the entire street and road network.The conclusions outline the prospects for development of the developed software in terms of application in intelligent transport systems.

Author(s):  
Paulo Figueiras ◽  
Hugo Antunes ◽  
Guilherme Guerreiro ◽  
Ruben Costa ◽  
Ricardo Jardim-Gonçalves

In the recent decades, we have witnessed an increase in the number of vehicles using the road infrastructure, resulting in an increased overload of the road network. To mitigate such problems, caused by the increasing number of vehicles and increasing the efficiency and safety of transport systems has been integrated applications of advanced technology, denominated Intelligent Transport Systems (ITS). However, one problem still unsolved in current road networks is the automatic identification of road events such as accidents or traffic jams, being inhibitor to efficient road management. In order to mitigate this problematic, this paper proposes the development of a technological platform able to detect anomalies (abnormal traffic events) to typical road network status and categorize such anomalies. The proposed work, adopts a complex event processing (CEP) engine able to monitor streams of events and detect specified patterns of events in real time. Data is collectively collected and analysed in real-time from loop sensors deployed in Slovenian highways and national roads, providing traffic flows. This prototype will work with a large number of data, being used to process all data, complex event processing tools. All the data used to validate the present study is based on the Slovenian road network. This work has been carried out in the context of the OPTIMUM Project, funded by the H2020 European Research Framework Program.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Igor Pugachev ◽  
Aleksey Kamenchukov ◽  
Valentin Shcheglov ◽  
Nina Smirnova

The national project “Safe and high-quality roads” is aimed at the development, creation and effective use of intelligent transport systems. Today, there are many technical solutions to improve road safety, as well as optimize the process of organizing traffic. Often, these solutions lie not only in the plane of design, in the use of technical means for organizing traffic, in reconstruction of the existing street-road network, but also in the use of intelligent transport systems. The article has developed a concept for the development of a road-road network in Khabarovsk, in connection with the adoption by the Government of the Khabarovsk Territory of a decision on the construction of a transport interchange at the intersection of Voronezh-Bolshaya Streets in Khabarovsk, as part of the national project “Safe and High-Quality Roads” in the Khabarovsk Territory. The collection and analysis of statistical data, over a five-year period, on the types of frequency of occurrence of reported road traffic accidents. Visual and grapho-analytical methods identified the focus of the concentration of traffic accidents at the considered site of the road network of the city of Khabarovsk. Based on the method of conflict points, factors that influence the accident rate of an existing section of the road are studied. Several options for improving the quality and safety of traffic are considered: changing the number of lanes, regulating the traffic light, building a multi-level traffic intersection. Using modern software systems, based on methods of mathematical modeling, for several options developed models of traffic flows, identified the maximum possible comfortable and safe traffic conditions. Substantiated recommendations are given for improving the quality and safety of road traffic by improving the existing road situation.


Author(s):  
Victoria Bitykova ◽  
Nikita Mozgunov

The main discussion is about methods for assessing the intensity of traffic flows using geoinformation technologies. The intensity of traffic flows is one of the key indicators that determine the emission from transport in urban areas. In Russia, the growth in the volume and share of motor transport in pollution is increasing under the influence of an increase in the number of cars. This is most obvious examples of it are regions of the Central Federal District, but in the regional centers, under the influence of the improvement in the structure of the vehicle park, the growth of pollution is much slower, and in Moscow it has practically stabilized. At the local level, the determining factor of road traffic pollution is the change in the building density and the transport-planning structure. The collection and calculation of indicators that give an idea of the spatial differentiation of emissions from road transport is a very time-consuming stage of the study. The most common method of obtaining information on the transport and environmental situation in the city is directly field data collection. However, this method is quite time consuming for research. In conditions when the transport infrastructure is developing rapidly, the speed of field observations does not allow promptly updating information on changes in the traffic load of the road network and, as a result, assessing the current ecological situation in the territory. As an alternative to the traditional collection of information, modern sources of geoinformation data can be used. The services, originally developed to provide operational monitoring of the traffic situation and the construction of optimal routes, can also serve as a source of data for models for assessing the intensity of traffic load in environmental studies. The proposed technique has been tested at the level of districts and administrative districts of Moscow. The results obtained are compared with control field observations. The relatively low measurement error when using data from information systems is compensated by the possibility of more efficiently obtaining information about the traffic load on the sections of the road network.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7281
Author(s):  
Răzvan Andrei Gheorghiu ◽  
Valentin Iordache ◽  
Angel Ciprian Cormoș

As road traffic networks become more congested and information systems are implemented to manage traffic flows, real-time data gathering becomes increasingly important. Classic detectors are placed in one point of the network and are able to provide information only from that area. As useful as this is, it lacks the big picture of the routes the vehicles usually travel. There are applications developed to help individuals make their way into the road network, but these are no solutions that deal with the cause of traffic; rather, they counteract the effects. It becomes obvious that a proper management system, with knowledge of all the relevant aspects will better serve all travelers. The detection solution proposed in this paper is based on Bluetooth detectors. This system is able to match detected devices in the road network, filter the results, and generate a vehicle count that is proved to follow RADAR detection results.


2019 ◽  
Vol 16 (6) ◽  
pp. 670-679 ◽  
Author(s):  
I. E. Agureev ◽  
D. A. Yurchenko

Introduction. The load models of the road network make it possible to understand a lot of the transport, social, environmental, and other city problems. Creating transport models requires knowledge of the traffic flows’ formation and functioning. The paper formulates a goal and poses tasks for the research conducting of the adjoining territories of residential areas in Tula as one of the urban traffic flows’ sources and of the identifying patterns of the parking places near houses’ influence on the road network loading.Materials and methods. The basis of the research was the development in the field of predictive simulation of automobile transport systems. The authors used complex of computer-aided design “TransNet”, which allowed adjusting the initial data in the base model by the results of the parking places’ functioning.Discussion and conclusions. As a result, the improved transport model of Tula allows making the forecast for determining the main parameters of the transport system taking into account the dynamics of vehicles’ local area departure at different time intervals. Moreover, the proposed methodological tools and algorithm for solving the problem of the road network loading in a quasi-dynamic setting helps to solve existing transport problems and to improve the traffic organization.The authors have read and approved the final manuscript. Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.


Author(s):  
Polishchuk V. ◽  
Nahrebelna L.

The development of road transport, both economically and socially, is of great importance for humanity. But along with the tremendous benefits andunlimited potential of road transport, there are many problems, particularly with its operation in human settlements, particularly in cities. Theseproblems are related to the oversaturation of the road network of cities with road transport, which leads to a decrease in speed, congestion, increased traveltime. Ensuring the required capacity of the site is the main indicator of creating conditions for the efficient functioning of the transport system of cities.Each section has its own planning features that allow the car to move at an acceptable speed and at the same time not create any situations that could lead to the formation of congestion.It is known that the lower the speed, the greater the time spent. Speed is one of the most important indicators of traffic flow. Any reduction in the speed of traffic flows compared to the permitted leads to economic losses. And if we consider the reduction of speed, taking into account the stop in motion (delay), it leads to much greater economic losses.


2021 ◽  
Vol 116 (1) ◽  
pp. 299-304
Author(s):  
Assel Aliyadynovna Sailau

The number of vehicles on the roads of Almaty, Kazakhstan is growing from year to year. This brings about an increasing intensity and density of traffic flows in the streets which leads to congestion, decreasing speed of the traffic flow, increasing environmental pollution caused by car emissions, and which can potentially lead to the road traffic accidents (RTA), including fatalities. While the number of injuries grows up mainly due to drivers’ non-compliance with the speed limit, the environmental pollution is caused by longer traffic jams. Therefore, to reduce the level of road traffic injuries and emissions into the environment it is necessary to ensure the uniform movement of traffic flows in cities. Currently, one of the effective ways to do it is the use of transport telematics systems, in particular, control systems for road signs, road boards and traffic lights. The paper presents an analysis of existing systems and methods of traffic light regulation. The  analyses of the systems and methods are based on the use of homogeneous data, that is the data on standard parameters of traffic flows. The need in collecting and analyzing additional semi-structured data on the factors that have a significant impact on the traffic flows parameters in cities is shown as well. The work is dedicated to solving the problem of analysis and forecast of traffic flows in the city of Almaty, Kazakhstan. GPS data on the location of individual vehicles is used as the initial data for solving this problem. By projecting the obtained information onto the graph of the city's transport network, as well as using additional filtering, it is possible to obtain an estimate of individual parameters of traffic flows. These parameters are used for short-term forecast of the changes in the city's transport network.


2021 ◽  
Vol 10 (7) ◽  
pp. 485
Author(s):  
Jiandong Bai ◽  
Jiawei Zhu ◽  
Yujiao Song ◽  
Ling Zhao ◽  
Zhixiang Hou ◽  
...  

Accurate real-time traffic forecasting is a core technological problem against the implementation of the intelligent transportation system. However, it remains challenging considering the complex spatial and temporal dependencies among traffic flows. In the spatial dimension, due to the connectivity of the road network, the traffic flows between linked roads are closely related. In the temporal dimension, although there exists a tendency among adjacent time points, the importance of distant time points is not necessarily less than that of recent ones, since traffic flows are also affected by external factors. In this study, an attention temporal graph convolutional network (A3T-GCN) was proposed to simultaneously capture global temporal dynamics and spatial correlations in traffic flows. The A3T-GCN model learns the short-term trend by using the gated recurrent units and learns the spatial dependence based on the topology of the road network through the graph convolutional network. Moreover, the attention mechanism was introduced to adjust the importance of different time points and assemble global temporal information to improve prediction accuracy. Experimental results in real-world datasets demonstrate the effectiveness and robustness of the proposed A3T-GCN. We observe the improvements in RMSE of 2.51–46.15% and 2.45–49.32% over baselines for the SZ-taxi and Los-loop, respectively. Meanwhile, the Accuracies are 0.95–89.91% and 0.26–10.37% higher than the baselines for the SZ-taxi and Los-loop, respectively.


2021 ◽  
Vol 67 (3) ◽  
pp. 33-38
Author(s):  
Emir Smailovic ◽  
Boris Antić ◽  
Dalibor Pešić ◽  
Slaviš Beronja

Tunnels are underground passages, placed horizontally, which serve to lead the road through them. In order to fulfill its purpose in road traffic, the tunnel must fit into the traffic infrastructure and as such not create an obstacle in movement and enable the movement of vehicles from entrance to exit without danger, but with increased restriction of freedom of lateral evacuation. Tunnels are among some of the most risky parts of the road network, primarily due to space constraints, where there is a possibility of a traffic accident. Managing the risks associated with the passage of road traffic, and in particular the safety of traffic in tunnels, is a serious problem in many countries. With the growing number of road users, it is necessary to adopt stricter standards regarding road tunnels. In addition to meeting these safety standards, factors such as operational requirements, economic efficiency, energy efficiency and state-of-the-art technology should also be taken into account when planning and equipping tunnels.


Sign in / Sign up

Export Citation Format

Share Document