Automated submission script to AlloSigMA webserver: a viable approach for allosteric effects scanning

2018 ◽  
Author(s):  
Ser-Xian Phua ◽  
Kwok-Fong Chan ◽  
Chinh Tran-To Su
Keyword(s):  
2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


Author(s):  
T. Zanon ◽  
W. Maly

Abstract Building a portfolio of deformations is the key step for building better defect models for the test and yield learning domain. A viable approach to achieve this goal is through geometric characterization and classification of failure patterns found on memory fail bitmaps. In this paper, we present preliminary results on how to build such a portfolio of deformations for an IC technology of interest based on a fail bitmap analysis study conducted on large, modern SRAM memory products.


2008 ◽  
Author(s):  
J. R. Magwood ◽  
C. R. Bucher ◽  
S. R. Renn ◽  
J. R. Shea ◽  
T. U. Tran
Keyword(s):  

2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Krzysztof Rodzeń ◽  
Preetam K. Sharma ◽  
Alistair McIlhagger ◽  
Mozaffar Mokhtari ◽  
Foram Dave ◽  
...  

The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 205-215
Author(s):  
David Trafimow ◽  
Tonghui Wang ◽  
Cong Wang

In a recent article, Trafimow suggested the usefulness of imagining an ideal universe where the only difference between original and replication experiments is the operation of randomness. This contrasts with replication in the real universe where systematicity, as well as randomness, creates differences between original and replication experiments. Although Trafimow showed (a) that the probability of replication in the ideal universe places an upper bound on the probability of replication in the real universe, and (b) how to calculate the probability of replication in the ideal universe, the conception is afflicted with an important practical problem. Too many participants are needed to render the approach palatable to most researchers. The present aim is to address this problem. Embracing skewness is an important part of the solution.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 356
Author(s):  
Eva Shannon Schiffrer ◽  
Matic Proj ◽  
Martina Gobec ◽  
Luka Rejc ◽  
Andrej Šterman ◽  
...  

The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (β5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the β5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure–activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.


Author(s):  
Cheng-Min Hsu ◽  
Sheng-Chieh Lin ◽  
Kuan-Wen Wu ◽  
Ting-Ming Wang ◽  
Jia-Feng Chang ◽  
...  

In this retrospective study, we aim to assess the safety and feasibility of adapting subtalar arthroereisis (SA) for type I osteogenesis imperfecta (OI) patients with symptomatic flatfoot. From December 2013 to January 2018, six type I OI patients (five girls and one boy, 12 feet) with symptomatic flexible flatfoot were treated with SA and the Vulpius procedure. All the patients were ambulatory and skeletally immature with failed conservative treatment and unsatisfactory life quality. The median age at the time of surgery was 10 years (range 5–11), and the median follow-up period was 55 months (range 33–83). All functional and radiographic parameters improved (p < 0.05) after the procedure at the latest follow-up. The median American Orthopaedic Foot and Ankle Society ankle-hindfoot scale improved from 68 (range 38–80) to 95 (range 71–97). All of the patients ambulated well without significant complications. The weight-bearing radiographs showed maintained correction of the tarsal bone alignment with intact bony surfaces adjacent to implants during the post-operative follow-up period. This is the very first study on symptomatic flatfoot in pediatric patients with type I OI. Our data suggest that SA is a potentially viable approach, as functional improvements and maintained radiographic correction without significant complication were observed.


Sign in / Sign up

Export Citation Format

Share Document