scholarly journals Public attitudes and environmental impacts of wind farms: a review

2013 ◽  
Vol 15 (4) ◽  
pp. 585-604 ◽  

<p>The promotion of renewable sources for electricity production, independent of carbon fuels and nuclear power, is a priority in the energy policy of many countries all over the world. The European Union has launched an ambitious program to increase the contribution of energy production from wind turbines; the aim set for the year 2020 is that wind power should account for 31% of EU&rsquo;s current target regarding 20% reductions of carbon dioxide. This policy is favored by the fact that wind energy production cost is nowadays competitive in many cases to the cost of electricity produced from conventional non-renewable sources. However, there is a conflict concerning public attitudes: although the public in general is in favor of renewable energy sources including wind, there is usually very strong opposition by local people living in neighboring areas of wind farm developments that is attitudes toward wind power are to a large extent different from attitudes toward wind farms. It is also interesting that negative public opinion is rather high during the planning stage and significantly lower during the implementation stage. In addition, there are impacts on landscape aesthetic, human health as well as ecological impact on the flora and fauna, although compared to environmental impact from conventional energy sources, the environmental impact caused by wind turbines is relatively minor. Recent developments of offshore wind farms seemed to avoid people&rsquo;s negative attitudes and soften public resistance and hostility against wind power energy but these expectations were rather optimistic. Opposition due to seascape aesthetic spoiling is as strong even for the marine environment. The impact on marine life and particularly on sea mammals due to noise and vibrations need to be further investigated. Existing activities such as navigation, fishing and recreational activities should not be hindered during site selection and planning. In the present work public attitudes and impacts on human health as well as impacts on landscape and ecosystem level, both terrestrial and marine, are reviewed and discussed.</p>

2019 ◽  
pp. 36-41
Author(s):  
Kachan Yu ◽  
Kuznetsov V

Purpose. Identify the features of operation of wind farms as an auxiliary supplier of electricity for non-traction consumers of railway networks and analyze the main factors that directly affect the use of wind farms due to the random nature of wind flow and additional factors due to the above conditions in different climates. The research methodology is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. The need to use renewable energy sources in the power supply systems of non-traction consumers of railway transport is obvious. Given the constant growth of prices and tariffs for electricity in Ukraine, more and more attention is paid to its savings and the search for the cheapest and most affordable alternative sources. The authors consider issues related to the possibility of using additional generation of electricity in the power supply systems of railway transport through the use of wind turbines, including for non-traction consumers. The analysis of wind flow features in some regions of Ukraine was carried out, and the measurement of wind speed in Zaporizhia and Dnipropetrovsk regions was obtained with the help of a compact wind speed sensor manufactured by Micro-Step-MIS LLC (Russia). The obtained values of wind speed were recorded and stored digitally. The received information of the above device was processed. The authors conclude that in the case of using wind turbines as an additional power source in the networks of non-traction consumers of railway power supply systems it is economically advantageous to connect them directly to these networks and fully use all electricity produced by them, reducing its consumption from this power supply system. The originality is that the use of renewable energy sources in the power supply systems of non-traction consumers of railway transport, in particular wind turbines, is proposed. Practical implications. Introduction of wind power plants as an auxiliary supplier of electricity for non-traction consumers of railway power grids in order to minimize electricity costs. Keywords: renewable energy sources, quality of electric energy, wind power plant, power supply networks of railway transport, non-traction consumers of railway electric networks, electricity production, wind speed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2770
Author(s):  
Anna Stoppato ◽  
Alberto Benato ◽  
Francesco De Vanna

The aim of this study is to assess the environmental impact of storage systems integrated with energy plants powered by renewable sources. Stationary storage systems proved to be a valid solution for regulating networks, supporting frequency, and managing peaks in electricity supply and demand. Recently, their coupling with renewable energy sources has been considered a strategic means of exploiting their high potential since it permits them to overcome their intrinsic uncertainty. Therefore, the storage systems integration with distributed generation can improve the performance of the networks and decrease the costs associated with energy production. However, a question remains regarding the overall environmental sustainability of the final energy production. Focusing on electrochemical accumulators, the problems mainly concern the use of heavy metals and/or impacting chemical components of storage at the center of environmental hazard debates. In this paper, an environmental assessment from a life-cycle perspective of the hybrid energy systems powered by fossil and renewable sources located on two non-interconnected minor islands is presented. Existing configurations are compared with new ones obtained with the addition of batteries for the exploitation of renewable energy. The results show that, for batteries, the assembly phase, including raw material extraction, transport, and assembly, accounts for about 40% of the total, while the remaining part is related to end-of-life processes. The reuse and recycling of the materials have a positive effect on overall impacts. The results also show that the overall impact is strongly related to the actual energy mix of the place where batteries are installed, even if it is usually lower than that of the solution without the batteries. The importance of a proper definition of the functional unit in the analysis is also emphasized in this work.


Author(s):  
Victorita Radulescu

Nowadays a large interest in the public and private sector is dedicated in generating electricity using renewable resources. Thus, over 60,000 MW is produced worldwide by using the wind energy. These systems are generally composed of power plants formed from 2–3 to several tens, hundreds of wind turbines with rotating blades that reach heights over 160m. The number, the height, and the rotation of these wind turbines represent technical challenges for the radar system efficiency and accuracy. They should be assessed carefully, in each case, to ensure that it maintains an acceptable level of the air space surveillance capability. The research paper presents the influence of the wind power farms on the air radars especially in cases of surveillance area, both for the primary radars and the secondary radars. There are differences between the interference between the wind turbines and radars functioning, depending on the types of radars. In the last decades in Romania is a permanent effort to increase the number the wind farms built, or in the process of being built, but also referring at the number of wind turbines in these parks and their physical dimensions. This paper focuses on the effects of the wind farms on the radars efficiency, and their potential impact on the ability of airspace surveillance. This results in a concise and transparent reference guide for developers of wind farms when assessing the impact of wind turbines on aerial surveillance systems. Specialists are relatively unanimous in their opinion that, in order to make an assessment of the impact of the wind farms on the radars must be defined at least three areas corresponding to different levels of the technical expertise. They must be combined with the influence of the wind farms on the ability of the radar to fulfill the mission, why they were installed, assuming that it is necessary to create an exclusive protection area. First, are discussed briefly the principles of the radar’s operation, depending on their type: primary and secondary surveillance radars. Further, are estimated the induced reflections by the wind power plant on the radar system. If the number of false targets generated by the reflections from wind turbines is too big, so it exceeds the processing capacity of the radar, the operational capacity will suffer. There are presented some theoretical aspects, followed by some cases where the proper functioning of the primary and secondary radars is affected. The model is tested in field, at two different distances, with airplanes and helicopter flying at different altitudes, with radar placed near the wind power plant Fantanele – Cogelac, the biggest in Romania. Finally, is estimated the area necessary to assure proper functioning of radars. Some conclusions and references are presented.


2018 ◽  
Vol 188 ◽  
pp. 04007
Author(s):  
Panagiotis Georgoulopoulos ◽  
Aggelos Kaldellis ◽  
John K. Kaldellis

Wind energy is currently an established electricity production option worldwide, contributing to the reduction of environmental pollution and CO2 emissions. Actually, during the last twenty years a considerable installed wind power increase has been encountered, thus the up to date installed wind power approaches 550GWe. The situation in Greece is fairly well since the current wind power in operation is approximately 2700MWe. As it is well established, the reliability of the wind turbines influences both the energy production and the maintenance and operation cost of commercial wind parks. As a result, the operational period of the machine is reduced, while additional expenses are needed in order to face the downtime causes. In the present work operational data of an important number of wind parks located in Greece have been analyzed. Moreover, emphasis is given on the impact that the wind parks' location has on the failures of commercial wind turbines. For this purpose real world data concerning similar wind parks, based on the same type of wind turbines, located on the mainland, on the islands or near the sea have been collected and analyzed. According to the data gathered one may compare the different failure patterns of contemporary commercial wind turbines operating for up to ten years all around Greece.


Author(s):  
Georgeta Soava ◽  
Anca Mehedintu ◽  
Mircea Raduteanu

Starting from the reality that Europe is in full transition, the aim of this study is to carry out an analysis to determine the contribution of renewable energy sources to primary energy production and also to determine the impact of the increase in the share of renewable energy on energy prices, on the economy. The study is based on the 2011 – 2015 information taken from the most recent studies conducted at EU and Romanian level on action plans on renewable energy sources and energy efficiency. On the basis of the data collected, the analysis focused on the share of renewable energy sources in energy production and primary energy production from renewable sources divided by individual sources and the structure of consumption on the main activities of the national economy to see how various factors influence the future of clean energy and the impact on energy prices. For analysis, a dynamic analysis tool was used, the Risk module in the Palisade software package, which through a series of simulations allows combining the identified uncertainties. The results of the analysis and simulations carried out made highlight the best scenarios of increasing the share of renewable sources in energy production, to lower energy prices and to sustainable economic growth.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.


2017 ◽  
Vol 46 (2) ◽  
pp. 224-241 ◽  
Author(s):  
Jacob R. Fooks ◽  
Kent D. Messer ◽  
Joshua M. Duke ◽  
Janet B. Johnson ◽  
Tongzhe Li ◽  
...  

This study uses an experiment where ferry passengers are sold hotel room “views” to evaluate the impact of wind turbines views on tourists’ vacation experience. Participants purchase a chance for a weekend hotel stay. Information about the hotel rooms was limited to the quality of the hotel and its distance from a large wind turbine, as well as whether or not a particular room would have a view of the turbine. While there was generally a negative effect of turbine views, this did not hold across all participants, and did not seem to be effected by distance or hotel quality.


2021 ◽  
Author(s):  
Marcus Klose ◽  
Junkan Wang ◽  
Albert Ku

Abstract In the past, most of the offshore wind farms have been installed in European countries. In contrast to offshore wind projects in European waters, it became clear that the impact from earthquakes is expected to be one of the major design drivers for the wind turbines and their support structures in other areas of the world. This topic is of high importance in offshore markets in the Asian Pacific region like China, Taiwan, Japan, Korea as well as parts of the United States. So far, seismic design for wind turbines is not described in large details in existing wind energy standards while local as well as international offshore oil & gas standards do not consider the specifics of modern wind turbines. In 2019, DNV GL started a Joint Industry Project (JIP) called “ACE -Alleviating Cyclone and Earthquake challenges for wind farms”. Based on the project results, a Recommended Practice (RP) for seismic design of wind turbines and their support structures will be developed. It will supplement existing standards like DNVGL-ST-0126, DNVGL-ST-0437 and the IEC 61400 series. This paper addresses the area of seismic load calculation and the details of combining earthquake impact with other environmental loads. Different options of analysis, particularly time-domain simulations with integrated models or submodelling techniques using superelements will be presented. Seismic ground motions using a uniform profile or depth-varying input profile are discussed. Finally, the seismic load design return period is addressed.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1810 ◽  
Author(s):  
Shyuan Cheng ◽  
Yaqing Jin ◽  
Leonardo P. Chamorro

We experimentally explored the impact of a wind turbine with truncated blades on the power output and wake recovery, and its effects within 2 × 3 arrays of standard units. The blades of the truncated turbine covered a fraction of the outer region of the rotor span and replaced with a zero-lift structure around the hub, where aerodynamic torque is comparatively low. This way, the incoming flow around the hub may be used as a mixing enhancement mechanism and, consequently, to reduce the flow deficit in the wake. Particle image velocimetry was used to characterize the incoming flow and wake of various truncated turbines with a variety of blade length ratios L / R = 0.6 , 0.7, and 1, where L is the length of the working section of the blade of radius R. Power output was obtained at high frequency in each of the truncated turbines, and also at downwind units within 2 × 3 arrays with streamwise spacing of Δ x / d T = 4 , 5, and 6, with d T being the turbine diameter. Results show that the enhanced flow around the axis of the rotor induced large-scale instability and mixing that led to substantial power enhancement of wind turbines placed 4 d T downwind of the L / R = 0.6 truncated units; this additional power is still relevant at 6 d T . Overall, the competing factors defined by the expected power reduction of truncated turbines due to the decrease in the effective blade length, the need for reduced components of the truncated units, and enhanced power output of downwind standard turbines suggest a techno-economic optimization study for potential implementation.


Sign in / Sign up

Export Citation Format

Share Document