scholarly journals Hydrolysis of agricultural waste to obtain reducing sugars using conventional and ultrasound-assisted technologies

2015 ◽  
Vol 17 (4) ◽  
pp. 816-824

<div> <p>The main objective of this study was to evaluate the hydrolysis of rice hulls to obtain reducing sugars by conventional and ultrasound-assisted acid hydrolysis. For this purpose, the methodology of experimental design was used to evaluating the influence of temperature, moisture content and concentration of phosphoric acid on the yield of reducing sugars. The yields at optimized conditions were of 141.1 and 162.0 g.kg<sup>-1</sup>, for conventional and ultrasound-assisted hydrolysis, respectively. It was possible to obtain high yield using less acid and low temperature, in a manner that ultrasound can be used as a technology for process intensification.&nbsp;</p> </div> <p>&nbsp;</p>

2023 ◽  
Vol 83 ◽  
Author(s):  
A. Chaudhary ◽  
A. M. Akram ◽  
Qurat-ul-Ain Ahmad ◽  
Z. Hussain ◽  
S. Zahra ◽  
...  

Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.


2017 ◽  
Vol 68 (2) ◽  
pp. 197 ◽  
Author(s):  
X. Hou ◽  
S. Sun

Phoenix tree (Firmiana simplex) seed oil is a novel oil which is rich in sterculic acid. Sterculic acid, a cyclopropene fatty acid, can be used as the inhibitor of the stearoyl-CoA desaturase system and mammary carcinomas growth. In this work, Lipozyme TLIM-catalyzed hydrolysis of the novel Phoenix tree seed oil was used to prepare sterculic acid. High temperature GC-FID and the degree of hydrolysis (DH) were used to monitor the reaction progress. Effects of reaction variables on the hydrolysis were evaluated and optimized using response surface methodology. Results showed that sterculic acid can be successfully prepared from the novel seed oil, and the effect of reaction variables on the hydrolysis decreased in the order of reaction time > enzyme load > temperature. A high yield of fatty acids (DH, 98.2±0.8%) can be obtained under optimized conditions (45 ºC, mass ratio of water to oil 10:1, enzyme load 10%, and 18 h). The Arrhenius equation for the hydrolysis was LnV0 = 9.12-4721/T. The activation energy was 39.25KJ/mol. The kinetic values for Vmax, K/m were 0.232mol/(L∙min) and 0.084 mol/L, respectively.


2020 ◽  
Vol 51 (1) ◽  
pp. 57-61
Author(s):  
Antonio Gil ◽  
M. Beltran Siñani

The bioethanol that is produced worldwide is mostly obtained from agricultural crops such as sugarcane and corn. However, it has negative environmental effects, so the option of producing bioethanol from agricultural waste arises. This work evaluates the feasibility to produce second generation bietanol from oranges residues (peel and bagasse) produced in the province of Chapare, Bolivia. The estimation is carried out from the reducing sugars, determined by the DNS method, individual sugars, determined by HPLC, produced by acidic and enzymatic hydrolysis of the residues. Similarly, the amount of ethanol produced by fermentation of the samples is quantified. Regarding the results obtained, the best alternative in terms of bioethanol production is the enzymatic hydrolysis. An economic and environmental impact evaluation are also included considering the production of bioethanol from real orange residues.


2013 ◽  
Vol 1 (8) ◽  
pp. 995-1002 ◽  
Author(s):  
Audrey Hernoux-Villière ◽  
Ulla Lassi ◽  
Tao Hu ◽  
Anthony Paquet ◽  
Laura Rinaldi ◽  
...  

2015 ◽  
Vol 35 (2) ◽  
pp. 61-66 ◽  
Author(s):  
Raquel Cristine Kuhn ◽  
Marcio Antonio Mazutti ◽  
Edson Luiz Foletto ◽  
Valéria Dal Prá ◽  
Eduardo Zimmermann ◽  
...  

<p>In this work ultrasound-assisted solid-state enzymatic hydrolysis of rice bran to obtain fermentable sugars was investigated. For this purpose, process variables such as temperature, enzyme concentration and moisture content were evaluated during the enzymatic hydrolysis with and without ultrasound irradiation. The enzyme used is a blend of amylases derived from genetically modified strains of <em>Trichoderma</em> <em>reesei</em>. Kinetic of the enzymatic hydrolysis of rice bran at the constant-reaction rate period were measured. The best results for the ultrasound-assisted enzymatic hydrolysis was obtained using 3 wt% of enzyme, 60 <sup>o</sup>C and moisture content of 65 wt%, yielding 0.38 g sugar/g rice bran, whereas for the hydrolysis in the absence of ultrasound the highest yield was 0.20 g sugar/g rice bran using 3 wt% of enzyme, 60 <sup>o</sup>C and moisture content of 50 wt%. The use of ultrasound-assisted enzymatic hydrolysis of rice bran was intensified, obtaining around 74% more fermentable sugar than in the absence, showing that the use of ultrasound is a promising technology to be used in enzymatic reaction as an alternative of process intensification. </p>


2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 320
Author(s):  
Arnaud Masselin ◽  
Antoine Rousseau ◽  
Stéphanie Pradeau ◽  
Laure Fort ◽  
Rodolphe Gueret ◽  
...  

Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.


2021 ◽  
Author(s):  
Yuxiao Dong ◽  
Dongshen Tong ◽  
Laibin Ren ◽  
Xingtao Chen ◽  
Hao Zhang ◽  
...  

Author(s):  
Yogita P. Labrath ◽  
Prafulla V. Belge ◽  
Uma G. Kulkarni ◽  
Vilas G. Gaikar

Abstract The turmeric rhizome (Curcuma longa) contains curcuminoids embedded in the starch matrix. It is thus important to target starch hydrolysis to enhance extraction of curcuminoids. In the case of starch hydrolysis, α-amylase is more efficient when the starch is in a gelatinised form than when it is in its natural form. The present work includes hydrolysis of turmeric starch in its natural and gelatinised forms using α-amylase in hydrotrope solution (HS) and scCO2. The optimum rate of starch hydrolysis was obtained using 200 IU cm−3 of α-amylase, at reaction conditions of 6.5 pH at 328 K when 10% w/w of turmeric powder was stirred at 900 rpm in HSs. The hydrolysis in 15 MPa scCO2 at room temperature required a phase modifier and 40 min of residence time (RT). The enzyme treatment of turmeric powder in HSs increased the filtration rate for curcuminoid extraction (gelatinised and native) compared to untreated turmeric powder.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


Sign in / Sign up

Export Citation Format

Share Document