scholarly journals A Global Sand Budget—A Discussion of Sand Generation, Use and Destruction. Are We Running Out of Sand?

2009 ◽  
Vol 43 (2009) ◽  
pp. 26-32
Author(s):  
Robert C. Laudon

Recent articles on soil erosion sound the alarm regarding the large amount soil that is being lost due to modern agricultural practices, and there is a general concern that we may be destroying our sand and soil resources at rates that greatly exceed generation and preservation rates. There is also a general concern in the sand and aggregate industry as to whether sand is a renewable natural resource. The paper is unique and important to soil science as well as geology because it pulls together data from diverse sources in an attempt to summarize global rates of sand and soil generation from parent material, rates of sand consumption by humans, and rates of sand loss to humans through erosion and transportation to the oceans. While there is considerable literature on rates of soil erosion, there is remarkably little literature on rates of sand or soil generation from parent materials. Where rate numbers were found they were commonly local, and not global. They were commonly highly variable, and many conversions were required to put them in common, global units. Through a number of assumptions and calculations, the following conclusions have been made for global sand rates. (1) Sand is being generated from primordial granites at rates estimated at 1.6 billion tons/year. (2) Sand is being generated from soils at rates that range between 0.06 and 450 billion tons/year globally with an average of the most reasonable sources at 5.0 billion tons/year. (3) Sand today, through erosion and natural causes, is lost to the oceans at rates estimated at 4.8 billion tons/year. (4) Modern erosion rates are considered to be an order of magnitude greater than pre-human erosion rates, or about 0.5 billion tons/year. (5) Construction grade sand is currently mined at approximately 4.5 billion tons/year and industrial grade sand is consumed at about 0.2 billion tons/year for a total human usage estimated at 4.7 billion tons/year. Thus, total sand consumption by humans is slightly less than global generation rates, and an argument can be made that sand is a renewable natural resource. However, if modern rates of erosion and loss to the oceans are considered, then we are losing considerable ground with regard to total sand and soil availability.

Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 80
Author(s):  
Artemi Cerdà ◽  
David Salesa ◽  
Jesús Rodrigo-Comino ◽  
Gaspar Mora-Navarro ◽  
Enric Terol ◽  
...  

A review on trial erosion shows that soil erosion rates are one to three orders of magnitude higher than the ones recommended as sustainable. This is threatening the sustainable managements of mountain terrains, mainly in the popular hiking paths. The warm temperatures characterize Eastern Spain in winter, which results in visitors from northern Europe to walk in the coastal land mountainous terrain. This increases the pressure to the currently highly visited most popular paths. We selected representative transects of the trails of Serra de Bérnia, Puigcampana, Penyagolosa, Montcabré, Serra del Sit, Aitana, Les Tres Creus, Caroig, Cupurutxo and Circ de la Safor. All the selected study sites have Limestone parent material, and a scrubland as vegetation cover and the selected slope angle ranged in average between 5 and 10%. The surveys showed that soil erosion rates measured with a topographical method range from 13 till 450 Mg ha−1 y−1. There is a clear relation between the number of users and the damage done on the trails; and we found that short cuts are the areas that contribute with fresh sediment. Rock outcrops are found in 34% of the measured trail sections and this is a good example how the complete soil can be lost as a consequence of recreational activities.


2021 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
Enric Terol ◽  
Artemi Cerdà

Policymakers, stakeholders and rural inhabitants must be aware of the relevance of soil erosion as an irreversible landdegradation process. This is key to achieve the land degradation neutrality challenge and the sustainability of humankindand natural ecosystems. Agricultural areas are being affected by soil erosion threatening soil quality and, subsequently,food security. Therefore, it is necessary to develop new techniques and methods visually friendly and easy to be accessedto survey and assess the soil erosion concerns. ISUM (Improve Stock Unearthing Method) is a well-contrasted procedureto estimate and map soil mobilisation and erosion rates. To achieve this goal, using the plant graft union as a biomarkerconducting in situ topographical measurements along perpendicular transects allow us to i) explain key factors related tothe activation of soil erosion processes such as tillage, the age of plantation, parent material or hillslope positions; ii)complete other well-contrasted methods such as RUSLE (Revised Soil Loss Equation), IC (Index of connectivity) orStructure from Motion; and, iii) identify hotspot areas affected by soil depletion, accumulation or mobilisation. In thisconference, we will show how we developed a new improvement of this method in different crops (vineyards, citrus,persimmons or almonds), under different environmental conditions (parent material, vine ages, soil management, or slopeangle) with diverse geomatic procedures (interpolation methods and geostatistical analysis, topographical measurementsand models) using GIS techniques.


2019 ◽  
Vol 11 (4) ◽  
pp. 1032-1041 ◽  
Author(s):  
N. A. Mohamad ◽  
A. Nainar ◽  
K. V. Annammala ◽  
D. Sugumaran ◽  
M. H. Jamal ◽  
...  

Abstract The rapid growth of agricultural plantations and climatic extremes has raised concerns pertaining to enhanced soil erosion. Soil erosion studies are still relatively limited in Malaysia. In this study, soil erosion in four sites such as high conservation value forests (HCVFs), logged forest (LF), mature oil palm (MOP), and mature rubber (MR) within the Kelantan River Basin was measured. A total of 3,207 measurements were conducted via the Modified Laser Erosion Bridge in all sites over 1 year. Results of soil erosion are 87.63, 25.45, 8.44, and 5.90 t ha−1 yr−1 for the HCVF, LF, MOP and MR, respectively – classified as very severe (HCVF), very high (LF), moderate (MP) and slight (MR) according to the Indian condition classification. Steep slope gradient (significant positive correlation to erosion) and logging are the main factors attributed to the high erosion rates. This is to be further explored in the future and more detailed studies should be conducted on the HCVF and LF areas, respectively. Mitigation measures and sustainable agricultural practices should be planned to control and reduce soil erosion.


2020 ◽  
Author(s):  
Olivier Cerdan ◽  
Valentin Landemaine ◽  
Rosalie Vandromme ◽  
Thomas Grangeon

<p>Numerous studies worldwide have reported a dramatic increase in soil erosion rates following the development of agriculture. In Western Europe, food security issues led to an intensification of agricultural practices after World War II. A profound modification of the landscapes was operated that translated into an increase in hydrosedimentary connectivity and a decrease in soil cover in winter. Related on-site soil degradation and off site societal and environmental detrimental effects rapidly started to call for the implementation of conservation measures. Since 2000, the French water agencies, through the European water framework directives, started to fund the implementation of soft hydraulic conservation measures, such as vegetated filter strips or linear vegetation barriers. These measures have the advantage to be easily implemented and to be visible in the landscape without compromising the intensive agriculture production system. After twenty years of funding of soft hydraulic conservation measures, soil erosion is still an issue. Are these solutions just a plaster on a wooden leg or are they really effective? Recent efforts consisting in catchment scale monitoring programs and modelling exercise tend to show that soft hydraulic conservation measures may be usefull for local mitigation actions but may have a limited impact in terms of floods and muddy floods. On the basis of simulation exercises in contrasting environments we will discuss the advantages and limitations of such measures.</p>


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


2021 ◽  
Vol 13 (4) ◽  
pp. 1991
Author(s):  
Silvia Stanchi ◽  
Odoardo Zecca ◽  
Csilla Hudek ◽  
Emanuele Pintaldi ◽  
Davide Viglietti ◽  
...  

We studied the effects of three soil management approaches (permanent grassing, chemical weeding, and buffer strips), and the additional impact of tractor passage on soil erosion in a sloping vineyard located in the inner part of Aosta Valley (N-W Italian Alps). The vineyard rows were equipped with a sediment collection system with channels and barrel tanks. A total of 12 events with sediment production were observed across 6 years, and the collected sediments were weighted and analyzed. Average erosion rates ranged from negligible (mainly in grassed rows) to 1.1 t ha−1 per event (after weeding). The most erosive event occurred in July 2015, with a total rainfall of 32.2 mm, of which 20.1 were recorded in 1 h. Despite the limited number of erosive events observed, and the low measured erosion rates, permanent grassing reduced soil erosion considerably with respect to weeding; buffering had a comparable effect to grassing. The tractor passage, independent of the soil management approaches adopted, visibly accelerated the erosion process. The collected sediments were highly enriched in organic C, total N, and fine size fractions, indicating a potential loss of fertility over time. Despite the measured erosion rates being low over the experiment’s duration, more severe events are well documented in the recent past, and the number of intense storms is likely to increase due to climate change. Thus, the potential effects of erosion in the medium and long term need to be limited to a minimum rate of soil loss. Our experiment helped to compare soil losses by erosion under different soil management practices, including permanent grassing, i.e., a nature-based erosion mitigation measure. The results of the research can provide useful indications for planners and practitioners in similar regions, for sustainable, cross-sectoral soil management, and the enhancement of soil ecosystem services.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-24
Author(s):  
Kristina S. Kalkan ◽  
Sofija Forkapić ◽  
Slobodan B. Marković ◽  
Kristina Bikit ◽  
Milivoj B. Gavrilov ◽  
...  

AbstractSoil erosion is one of the largest global problems of environmental protection and sustainable development, causing serious land degradation and environmental deterioration. The need for fast and accurate soil rate assessment of erosion and deposition favors the application of alternative methods based on the radionuclide measurement technique contrary to long-term conventional methods. In this paper, we used gamma spectrometry measurements of 137Cs and unsupported 210Pbex in order to quantify the erosion on the Titel Loess Plateau near the Tisa (Tisza) River in the Vojvodina province of Serbia. Along the slope of the study area and in the immediate vicinity eight representative soil depth profiles were taken and the radioactivity content in 1 cm thick soil layers was analyzed. Soil erosion rates were estimated according to the profile distribution model and the diffusion and migration model for undisturbed soil. The net soil erosion rates, estimated by 137Cs method range from −2.3 t ha−1 yr−1 to −2.7 t ha−1 yr−1, related to the used conversion model which is comparable to published results of similar studies of soil erosion in the region. Vertical distribution of natural radionuclides in soil profiles was also discussed and compared with the profile distribution of unsupported 210Pbex measurements. The use of diffusion and migration model to convert the results of 210Pbex activities to soil redistribution rates indicates a slightly higher net erosion of −3.7 t ha−1 yr−1 with 98% of the sediment delivery ratio.


Sign in / Sign up

Export Citation Format

Share Document