scholarly journals Hydrologic aspects of drained peatland renaturalization

Author(s):  
Andriy Mykhnovych

The peatland drainage is one of the main man-made factors of the landscape water circulation and peatland ecosystems degradation. To return former sustainable ecological state of peatland it is necessary to carry out the renaturalization. The essence of renaturalization is renewal of water regime with following renewal of the peatland ecosystem like it was before drainage. Change of water runoff regime is effective mechanism of the peatland renaturalization – so called active protection. To renaturalize the Zalyvky peatland in the Roztochia Natural Reserve it is necessary to keep high groundwater level that will cause renewal of peat forming, stop succession processes, growing up by untypical for peatland plant species, reduce the risk of peat burning. Based on the results of natural conditions and recent ecological state of the Zalyvky peatland analysis the general scheme of renaturalization and hydrologic regime renewal has been worked out. With this aim, the series of measures are realized. They allow increasing the groundwater levels due to coming of water from the river streams and channels, making the runoff slower and renewing small water bodies. Small water bodies like ponds play not only water regulating role but also key ecological role for many bird species, ecological education, and tourist-recreation attractive. It is expected that keeping of higher ground water levels will be assisted by the beavers population with their natural dams. Key words: renaturalization, drainage melioration, peatland, water runoff regulating.

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 962
Author(s):  
Moldir Aubakirova ◽  
Еlena Krupa ◽  
Zhanara Mazhibayeva ◽  
Kuanysh Isbekov ◽  
Saule Assylbekova

The variability of hydrochemical parameters, the heterogeneity of the habitat, and a low level of anthropogenic impact, create the premises for conserving the high biodiversity of aquatic communities of small water bodies. The study of small water bodies contributes to understanding aquatic organisms’ adaptation to sharp fluctuations in external factors. Studies of biological communities’ response to fluctuations in external factors can be used for bioindication of the ecological state of small water bodies. In this regard, the purpose of the research is to study the structure of zooplankton of small lakes in South-East Kazakhstan in connection with various physicochemical parameters to understand the role of biological variables in assessing the ecological state of aquatic ecosystems. According to hydrochemical data in summer 2019, the nutrient content was relatively high in all studied lakes. A total of 74 species were recorded in phytoplankton. The phytoplankton abundance varied significantly, from 8.5 × 107 to 2.71667 × 109cells/m3, with a biomass from 0.4 to 15.81 g/m3. Shannon diversity index of phytoplankton in the lakes at high altitude varied from 1.33 to 2.39 and from 0.46 to 3.65 in the lakes at lower altitudes. The average weight of the cells of algae species varied from 0.2079 to 1.5076 × 10−6 mg in the lakes at lower altitudes, the average weight of the cells of algae species changed from 0.6682 to 1.2963 × 10−6 mg in the lakes at higher altitudes. Zooplankton was represented by 58 taxa. The total abundance of zooplankton varied from 0.05 to 169.00 thousand ind./m3 with biomass of 0.51-349.01 mg/m3. Shannon diversity of zooplankton in the lakes at lower altitude fluctuated from 0.42 to 2.32 and it was 0.66–1.77 in the lakes at higher altitudes. The average individual mass of specimens in zooplankton in mountain lakes ranged from 0.021 to 0.037 mg and varied from 0.002 to 0.007 mg in other lakes. The main factors in the development of the structure of zooplankton communities in small lakes were temperature, TDS, the content of nitrates, phosphates, and the composition and biomass of planktonic algae. The hydrochemical and biological data of the investigated lakes indicated their organic pollution. Our results once again confirmed the applicability of structural variables of zooplankton in assessing water quality.


Author(s):  
Natalia Kuczyńska-Kippen ◽  
Barbara Nagengast ◽  
Tomasz Joniak

The impact of biometric parameters of a hydromacrophyte habitat on the structure of zooplankton communities in various types of small water bodies


Author(s):  
Christopher Mulanda Aura ◽  
Ruth Lewo Mwarabu ◽  
Chrisphine S. Nyamweya ◽  
Horace Owiti ◽  
Collins Onyango Ongore ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


2018 ◽  
Vol 45 (2) ◽  
pp. 199-204 ◽  
Author(s):  
T. N. Gerasimova ◽  
P. I. Pogozhev ◽  
A. P. Sadchikov

2021 ◽  
Author(s):  
Stefan Schlaffer ◽  
Marco Chini ◽  
Wouter Dorigo

<p>The North American Prairie Pothole Region (PPR) consists of millions of wetlands and holds great importance for biodiversity, water storage and flood management. The wetlands cover a wide range of sizes from a few square metres to several square kilometres. Prairie hydrology is greatly influenced by the threshold behaviour of potholes leading to spilling as well as merging of adjacent wetlands. The knowledge of seasonal and inter-annual surface water dynamics in the PPR is critical for understanding this behaviour of connected and isolated wetlands. Synthetic aperture radar (SAR) sensors, e.g. used by the Copernicus Sentinel-1 mission, have great potential to provide high-accuracy wetland extent maps even when cloud cover is present. We derived water extent during the ice-free months May to October from 2015 to 2020 by fusing dual-polarised Sentinel-1 backscatter data with topographical information. The approach was applied to a prairie catchment in North Dakota. Total water area, number of water bodies and median area per water body were computed from the time series of water extent maps. Surface water dynamics showed strong seasonal dynamics especially in the case of small water bodies (< 1 ha) with a decrease in water area and number of small water bodies from spring throughout summer when evaporation rates in the PPR are typically high. Larger water bodies showed a more stable behaviour during most years. Inter-annual dynamics were strongly related to drought indices based on climate data, such as the Palmer Drought Severity Index. During the extremely wet period of late 2019 to 2020, the dynamics of both small and large water bodies changed markedly. While a larger number of small water bodies was encountered, which remained stable throughout the wet period, also the area of larger water bodies increased, partly due to merging of smaller adjacent water bodies. The results demonstrate the potential of Sentinel-1 data for long-term monitoring of prairie wetlands while limitations exist due to the rather low temporal resolution of 12 days over the PPR.</p>


Sign in / Sign up

Export Citation Format

Share Document