scholarly journals Automatic Determination of Liquid's Interface in Crude Oil Tank using Capacitive Sensing Techniques

2019 ◽  
Vol 25 (12) ◽  
pp. 114-121
Author(s):  
Abdul Muhsin Mahood Abass

The petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is satisfying and close to the theoretical analysis model.

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6529
Author(s):  
Krystian Czernek ◽  
Stanisław Witczak

The paper presents the characteristics of the original optoelectronic system for measuring the values of hydrodynamics of two-phase downward gas-very viscous liquid flow. The measurement methods and results of the research on selected values describing gas–oil two-phase flow are presented. The study was conducted in vertical pipes with diameters of 12.5, 16, 22, and 54 mm. The research was conducted with the superficial velocities of air jg = 0–29.9 m/s and oil jl = 0–0.254 m/s, which corresponded to the values of gas stream density gg = (0–37.31) kg/(m2s) and of liquid gl = (0.61–226.87) kg/(m2s), in order to determine the influence of air and oil streams on the character of liquid films. The variations in oil viscosity were applied in the range ηl = (0.055–1.517) Pas. The study results that were obtained with optical probes along with computer image analysis system revealed vast research opportunities in terms of the identification of gas–liquid two-phase downward flow structures that were generated as well as the determination of the thickness of liquid film with various level of interfacial surface area undulation. The designed and constructed proprietary measuring system is also useful for testing the liquid layer by determining the parameters of the resulting waves. It is considered that the apparatus system that is presented in the article is the most effective in examining the properties of liquid layers of oil and other liquids with low electrical conductivity and a significant degree of monochromatic light absorption. In view of noninvasive technique of measuring characteristic values of liquid films being formed, the above measuring system is believed to be very useful for industry in the diagnostics of the apparatus employing such flows.


2011 ◽  
Vol 239-242 ◽  
pp. 1948-1951
Author(s):  
Lin Qi ◽  
Hong Zhao

The causes that lead to the shrunken cause of dome roof oil tank were analyzed and some practical measures were offered for the prevention of this kind of shrunken, which is valuable about ensuring security of oil tank and protection of external pressure caused destruction in oil tank. With the rapid development of China's oil economy, increased dramatically the demand for large-scale storage and transportation equipment. In the refining and chemical production equipment, the vertical cylindrical steel dome tank is a widely used storage device, it is low cost, easy to operate. Mainly used for storing crude oil, diesel and some chemical products. Tank design pressure is lower, the tank wall, tank top, tank bottom are thinner, and it is easy depression because of large negative pressure inside the tank in the course. Therefore, the correct understanding of the reasons of depression and mastering tank preventive measures, security maintenance for the storage of equipment is very important. In this paper, a refinery in Harbin City, take the dome tank as an example of crude oil and analysis cause of their depression.


2012 ◽  
Vol 8 (3) ◽  
pp. 233-260
Author(s):  
Sumeet Gupta ◽  
Rakesh Kumar Sharma

Oil & gas industry in India saw the light of the day when oil was struck at Makum near Marherita in Assam in the year 1967. Prior to independence the Oil & Gas industry in India had controlled by international companies. The entire domestic oil production was from one state – Assam which stood at 250,000 tons per annum. This study provides a holistic examination of pricing and Taxation dynamics in India’s Petroleum sector. This study mainly highlights the issues related to current practices used by ONGC to determine the prices of crude oil, natural gas & value added products and also the various types of direct and indirect taxed imposed on and paid by the company. Moreover, this study also explain the process of price determination of crude oil , natural gas & value added products.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2020 ◽  
Vol 16 (8) ◽  
pp. 1032-1040
Author(s):  
Laleh Samini ◽  
Maryam Khoubnasabjafari ◽  
Mohamad M. Alimorad ◽  
Vahid Jouyban-Gharamaleki ◽  
Hak-Kim Chan ◽  
...  

Background: Analysis of drug concentrations in biological fluids is required in clinical sciences for various purposes. Among other biological samples, exhaled breath condensate (EBC) is a potential sample for follow up of drug concentrations. Methods: A dispersive liquid-liquid microextraction (DLLME) procedure followed by a validated liquid chromatography method was employed for the determination of budesonide (BDS) in EBC samples collected using a homemade setup. EBC is a non-invasive biological sample with possible applications for monitoring drug concentrations. The proposed analytical method is validated according to the FDA guidelines using EBC-spiked samples. Its applicability is tested on EBC samples collected from healthy volunteers receiving a single puff of BDS. Results: The best DLLME conditions involved the use of methanol (1 mL) as a disperser solvent, chloroform (200 μL) as an extraction solvent, and centrifugation rate of 3500 rpm for 5 minutes. The method was validated over a concentration range of 21-210 μg·L-1 in EBC. Inter- and intra-day precisions were less than 10% where the acceptable levels are less than 20%. The validated method was successfully applied for the determination of BDS in EBC samples. Conclusion: The findings of this study indicate that the developed method can be used for the extraction and quantification of BDS in EBC samples using a low cost method.


2020 ◽  
Vol 16 (4) ◽  
pp. 456-464
Author(s):  
Danilo F. Rodrigues ◽  
Hérida R.N. Salgado

Background: A simple, eco-friendly and low-cost Infrared (IR) method was developed and validated for the analysis of Cefepime Hydrochloride (CEF) in injectable formulation. Different from some other methods, which employ organic solvents in the analyses, this technique does not use these types of solvents, removing large impacts on the environment and risks to operators. Objective: This study aimed at developing and validating a green analytical method using IR spectroscopy for the determination of CEF in pharmaceutical preparations. Methods: The method was validated according to ICH guidelines and the quantification of CEF was performed in the spectral region absorbed at 1815-1745 cm-1 (stretching of the carbonyl group of β- lactam ring). Results: The validated method showed to be linear (r = 0.9999) in the range of 0.2 to 0.6 mg/pellet of potassium bromide, as well as for the parameters of selectivity, precision, accuracy, robustness and Limits of Detection (LOD) and Quantification (LOQ), being able to quantify the CEF in pharmaceutical preparations. The CEF content obtained by the IR method was 103.86%. Conclusion: Thus, the method developed may be an alternative in the quality control of CEF sample in lyophilized powder for injectable solution, as it presented important characteristics in the determination of the pharmaceutical products, with low analysis time and a decrease in the generation of toxic wastes to the environment.


Sign in / Sign up

Export Citation Format

Share Document