scholarly journals Performance Evaluation of Pump Station of Main Outfall Drain in AL Nassiriyah City

2020 ◽  
Vol 26 (9) ◽  
pp. 191-203
Author(s):  
Ghaith Mohammed Ali .M. AL-Saffar ◽  
Hayder Abdulameer. K. AL-Thamiry

The Main Outfall drain pumping station in Nassiriyah is an important part in operation  system of the Main Outfall Drain (MOD) where it reduces the water levels in the U/S area of its and converted through Syphon freely under the Euphrates, its consists of several parts: U/S Basin, Station Building which contains 12 pumps, and Head Basin with Syphon, This station suffers from high levels especially in D/S area due to the current situation which is represented by establishing of dyke with pipes on MOD which located at 24 km from D/S of pumping station and Al-Khamisiyah Canal which located at 2.3 km from the U/S of dyke which feeds(Al Hammar Marsh) during drought season, several scenarios were adopted in order to explore the hydraulic effect of the current situation on the water levels and the performance of the syphon pumping system. The hydraulic effect of current situation causes an increase in D/S levels from 0.75 to 1 m,0.37to0.6m in operating (1,2)pumps, and the highest lack of the performance equal to 9.87%,5.58%,3.62%,2.62 % in operating (1,2,3,4)pumps respectively with designed head and 8.55%,5.40%,3.11%,1.8% with non- designed head.

2018 ◽  
Vol 202 ◽  
pp. 02009
Author(s):  
Vincent Chieng-Chen Lee

Impedance pump is a simple valve-less pumping mechanism; it offers a low energy, low noise alternative at both macro- and micro-scale devices. It is also demonstrated to be a promising new technique for producing and amplifying net flow. There have been research studying the effects of series-connected impedance pump, where an increase in net flow is exhibited. In this study, an integrated system of conventional pump and impedance pump is introduced. This paper describes the performance evaluation of this integrated pumping system, with emphasis on the amount of amplification induced as a function of Womersley number (normalized excitation frequency) and normalized pressure head. Due to the nature of the resonant valve-less impedance pump, the integrated pumping system exhibits similar behaviour and characteristics as an impedance pump, such as the pulsatile nature of net flow. Results show positive outcomes where maximum amplification of 91.7% is demonstrated at resonance.


2020 ◽  
Vol 164 ◽  
pp. 01002
Author(s):  
Svetlana Maksimova ◽  
Anna Shkileva ◽  
Ekaterina Verevkina

The main goal of this study is evaluation of reconstruction options for water pumping stations, regarding various factors (equipment purchase cost, maintenance, energy consumption). The search for the most profitable solution was carried out using the life cycle cost methodology for the urban water supply system’s first lift pump station. An analysis of the operating modes of the pumping station was carried out using curves of pumps and system. It was found that the option with a higher purchase price has the best technological indicators, including energy consumption. The expediency of the complete replacement of pumping equipment is confirmed by an analysis of life cycle costs.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 760
Author(s):  
Kai Wang ◽  
Jianbin Hu ◽  
Houlin Liu ◽  
Zixu Zhang ◽  
Li Zou ◽  
...  

Based on the discrete phase model (DPM) solid–liquid two-phase flow model and MATLAB image processing technology, an integrated prefabricated pumping station was taken as the research object to study deposition characteristics under different flow rates, different particle diameters, and different liquid levels. Considering the incomplete symmetry of the internal flow of the prefabricated pumping station, deposition characteristics of the prefabricated pumping station under single/double pumps were also analyzed. Double pumps were symmetrically distributed in the integrated prefabricated pump station, and the movement trajectories of particles at the bottom of the pump pit under the closing inlet valve were measured through the use of a high-speed photography experiment. Results showed that with the increase of the flow rate, the deposition rate of the separated prefabricated pumping station decreased. With an increase of the particle diameter, the movement of particles was farther away from the vertical barrier weir. In the range of particle diameter of 6 to 10 mm, the deposition rate decreased with the increase of the particle diameter. With the increase of the liquid level, the deposition rate decreased, first, and then increased again. In the case of the single pump operation, the deposition rate of the right pump operation was smaller than that of the left pump operation. The variation of the deposition rate when the right pump operated was basically the same as that when the dual pumps operated. The movement path of particle N1 was longer. With the decrease of the flow rate and the increase of the particle diameter, the following feature of the particle decreased, and it was easier to impact the walls and edges, which caused long-term deposition. The research results could provide some suggestions for the design of anti-deposition performance of prefabricated pumping station.


2011 ◽  
Vol 121-126 ◽  
pp. 2985-2988
Author(s):  
Wei Jin Ren

This paper attempts to find out a performance evaluation method that is suitable to the entire workflow characteristics through the analysis of the Current Situation about Performance Assessment of grass-roots local tax departments with the theory of performance evaluation, which provides some suggestion for local tax authority to improve management and service level.


Author(s):  
Li Cheng ◽  
Chao Liu ◽  
Jiren Zhou ◽  
Fangping Tang ◽  
Yan Jin

The pumping station with symmetric aerofoil can achieve reversible pumping function. It can keep high reversible efficiency and its flow coefficient is approaching to normal one. At same time, it has the simple structure and is easy to operate and maintain. The flow inside reversible pumping station is very complex and dominated by three dimensional viscous effects. With the rapid progress of computational fluid dynamics, CFD has become an important tool to help to make full understanding of flow. In order to recognize the characteristic of pumping station, the control volume method is used to simulation the flow filed. The RNG k-ε turbulent model and SIMPLEC algorithm are applied to do analysis. Flow field inside symmetric aerofoil blade and passage of pumping station are analyzed in detail. Some computational data, such as computational contour of sections, streamline of pumping system, flow vectors of blade and pressure contour of blade for two different rotate directional, are given in the paper. On the based of the simulation results, efficiency prediction of the pumping station is applied. By calculating the useful power and the hydraulic efficiency at the 11 different discharge points, capabilities of pumping station are predicted. A set of model pumping station with a 300mm blade are made for test. Using the laboratory test loop of which the total uncertainty of measured efficiency is ±0.39%, the hydraulic performance is evaluated and demonstrated. The numerical performances agree well with experiment data.


2008 ◽  
Vol 2008 (7) ◽  
pp. 7872-7885
Author(s):  
Paul W. Moulton ◽  
Scott Thibault ◽  
Robert McGuigan

2012 ◽  
Vol 605-607 ◽  
pp. 1330-1334
Author(s):  
Li Wen Wang ◽  
Yong Shen Long ◽  
Zhi Wei Xing

This article studies the flow pulsation of de-icing fluid pump station. First, find the factors affect the extent of flow pulsation through kinetics analysis. Then, base on the summary of the existing pulsation suspension methods (Include combining work of several pumps with an equal original phase differences, changing a single acting pump with a double acting pump), we put forward the method by optimizing the structure of the reciprocating pump to inhibit the flow pulsation. Use system simulation software AMESim to simulate the effect of these methods. Ultimately get the conclusion that the flow pulsation can be controlled at about 12% through these methods. All these works may provide a reference for the design of a de-icing fluid pumping station.


Author(s):  
X L Tang ◽  
F J Wang ◽  
Y J Li ◽  
G H Cong ◽  
X Y Shi ◽  
...  

This work uses a commercial computational fluid dynamics code to predict three-dimensional (3D) vortex flows in a large centrifugal-pump station under construction in China and proposes relevant vortex-eliminating schemes. Because of the complex nature of the vortex flows in sumps, different turbulence models, namely, standard k–ε, re-normalization group k–ε and realizable k–ε models, are first used to investigate their feasibility in predicting flows in a small physical model of an open pump sump, and various vortex streamlines and strength in the sump are predicted, analysed, and compared with the experimental data. The comparisons show that the realizable k–ε model predicts the position and strength of free-surface, sidewall-attached, and floor-attached vortices more accurately than the other two models. Then, the realizable k–ε model is used here to investigate 3D vortex flows in a large pumping-station sump. All the various vortices, such as free-surface, wall-attached vortices, are successfully predicted. Thus, based on the information of location, shape, size, and strength of the calculated vortices, three types of vortex-eliminating devices are proposed and their corresponding vortex suppression effects are analysed. These results will be used as reference for the safe and stable operation of the Hui–Nan–Zhuang pumping station in the future.


Author(s):  
L. Aiswarya ◽  
K. Arunadevi ◽  
R. Lalitha ◽  
S. Vallalkannan

Sign in / Sign up

Export Citation Format

Share Document