scholarly journals Research on the Deposition Characteristics of Integrated Prefabricated Pumping Station

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 760
Author(s):  
Kai Wang ◽  
Jianbin Hu ◽  
Houlin Liu ◽  
Zixu Zhang ◽  
Li Zou ◽  
...  

Based on the discrete phase model (DPM) solid–liquid two-phase flow model and MATLAB image processing technology, an integrated prefabricated pumping station was taken as the research object to study deposition characteristics under different flow rates, different particle diameters, and different liquid levels. Considering the incomplete symmetry of the internal flow of the prefabricated pumping station, deposition characteristics of the prefabricated pumping station under single/double pumps were also analyzed. Double pumps were symmetrically distributed in the integrated prefabricated pump station, and the movement trajectories of particles at the bottom of the pump pit under the closing inlet valve were measured through the use of a high-speed photography experiment. Results showed that with the increase of the flow rate, the deposition rate of the separated prefabricated pumping station decreased. With an increase of the particle diameter, the movement of particles was farther away from the vertical barrier weir. In the range of particle diameter of 6 to 10 mm, the deposition rate decreased with the increase of the particle diameter. With the increase of the liquid level, the deposition rate decreased, first, and then increased again. In the case of the single pump operation, the deposition rate of the right pump operation was smaller than that of the left pump operation. The variation of the deposition rate when the right pump operated was basically the same as that when the dual pumps operated. The movement path of particle N1 was longer. With the decrease of the flow rate and the increase of the particle diameter, the following feature of the particle decreased, and it was easier to impact the walls and edges, which caused long-term deposition. The research results could provide some suggestions for the design of anti-deposition performance of prefabricated pumping station.

Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.


2001 ◽  
Author(s):  
Tarek Mekhail ◽  
Zhang Li ◽  
Du Zhaohui ◽  
Willem Jansen ◽  
Chen Hanping

Abstract The PIV (Particle Image Velocimetry) technology is a brand-new technique of measuring velocity. It started in the 1980’s with the development of high-speed photography and the image processing technique of computers. This article deals with PIV applied to the study of unsteady impeller-vaneless diffuser interaction in centrifugal fen. Experiments were carried out at The Turbomachinery Laboratory of Shanghai Jiaotong University. The test rig consists of a centrifugal, shrouded impeller, diffuser and volute casing all made of plexiglass. A series of performance measurements were carried out at different speeds and different vaneless diffuser widths. PIV measurements were applied to measure the unsteady flow at the exit part of the impeller and the inlet part of the diffuser for the case of the same width vaneless diffuser. The absolute flow field is measured at medium flow rate and at maximum flow rate. It is informative to capture the whole flow field at the same instant of time, and it might be more revealing to observe the unstable flow in real time.


Author(s):  
Guangtai Shi ◽  
Zongku Liu ◽  
Yexiang Xiao ◽  
Helin Li ◽  
Xiaobing Liu

To investigate the effect of tip clearance on the velocity distribution in a multiphase pump, the internal flow and velocity distribution characteristics in pump under different tip clearances are studied using experimental and numerical methods. Simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS) and the standard k-ε turbulence model are carried out using ANSYS CFX. Under conditions of inlet gas void fraction (IGVF) is 5% at the flow rate of 0.6Q, 0.7Q and 0.8Q (Q is the design flow rate), the accuracy of the numerical method is verified by comparing with the experimental data using high-speed photography. Results show that the leakage flow interacts with the main flow and evolves into the tip leakage vortex (TLV). Due to the TLV, the pressure, velocity, turbulent kinetic energy (TKE), vorticity and streamlines on the S2 stream surface in the impeller and diffuser are changed greatly under different tip clearances. The velocities at the impeller outlet and diffuser inlet along the radial direction are also changed. The axial velocity distribution is similar to the meridional velocity distribution at the impeller blade outlet. While the relative velocity and absolute velocity distribution show the opposite trends. In addition, the vorticity is larger near the tip separated vortex and the hydraulic loss in pump is also increased due to the TLV.


Author(s):  
Sadegh Barzegar ◽  
Alireza Elhami Amiri ◽  
Pooyan Rahbar ◽  
Mehdi Assadi Niazi

Background and aim: A sea water intake, with original design of the six drum screen and twenty sea water pump intake with very different flow rate connected to header bay. The capacity of Origin Sea water intake including huge pump station and drum screen is 200,000 m3/hr. The purpose of the mathematical hydraulic model test of the sea water pumping station is to verify that the basin allows a good operating condition for each pump. To ensure a good operating condition for each pump, the design of the seawater basin has to insure: • A correct filter working; • Low transversal velocities; • A flow without vortex. Method and material: The mathematical model of the basin allows to know the flow and to verify: • The main dimensions of the pumping station; • The distance between the inlet ducts and the filters; • The distance between the filters and pump chambers. Result: in the first basin, the flow patterns no problems. Only swirl at the exit of culverts and near the free surface, and two areas where the flow has no velocity were observed. In the downstream other filters, we observe also a circulation that generates a tangential velocity. Conclusion: The mathematical model of the sea water pumping station has allowed calculating three cases (without and with filter stopped) for the low water level and nominal flow rate. In most difficult case, we observe some recirculation, mainly near the free surface, without more influence on principal flow. In the three cases, the distribution of the flow rate between the drum screens is uniform; the gap is inferior to 2%. At the entry of the pump chambers, the velocity fluctuations and the angle are low. Consequently, the secondary flows in pump chambers will be limited.


2021 ◽  
Vol 6 ◽  
Author(s):  
Abdullah N Alhawsawi ◽  
Majid Sarvi ◽  
Emad Felemban ◽  
Abbas Rajabifard ◽  
Jianyu Wang

The aim of this study is to understand the collective movements of individuals and to observe how individuals interact within a physical environment in a crowd dynamic, which has drawn the attention of many researchers. We conducted an experimental study to observe interactions in the collective motions of people and to identify characteristics of pedestrians when passing obstacles of different sizes (bar-shaped, 1.2 m, 2.4 m, 3.6 m and 4.8 m), going through one narrow exit and employing three different flow rates in walking and running conditions. According to the results of our study, there were no differences in collision-avoidance behaviour of pedestrians when walking or running. The pedestrians reacted early to the obstacles and changed the direction in which they were walking by quickly turning to the left or to the right. In terms of the speed of the pedestrians, the average velocity was significantly affected while performing these tasks, decreasing as the size of the obstacle increased; therefore, the size of obstacles will affect flow and speed levels. Travel time was shorter when participants were in the medium-flow rate experiments. In terms of the distance of each individual’s travel, our data showed that there was no significant difference in all the flow rate experiments for both speed levels. Our results also show that when the pedestrians crossed an obstacle, the lateral distance averaged from 0.3 m to 0.7 m, depending on the flow rate and speed level. We then explored how the body sways behaved while avoiding obstacles. It is observed that the average sway of the body was less in the high-speed conditions compared to the low-speed conditions – except for the HF & 4.8 m experiment. These results are expected to provide an insight into the characteristics of the behaviour of pedestrians when avoiding objects, and this could help enhance agent-based models.


Author(s):  
Zhifeng Yao ◽  
Fujun Wang ◽  
Zichao Zhang ◽  
Ruofu Xiao ◽  
Chenglian He

The pump operation stability is one of the most important indicators for large discharge pumping stations. Impeller seal rings wear is a key problematic issue. A large double suction centrifugal pump in a real water supply pumping station is numerically and experimentally investigated, of which the seal rings are seriously wore on a fixed location. The pump shaft throws in two orthorhombic directions are measured at flow rates ranging from 0 to 110% of nominal flow rate, as well as the startup and shut down periods. And careful analysis of radial forces under various steady and unsteady conditions is carried out combining with the experimental results. The results show that the value of the shaft displacement obviously increases as the flow rate decreases, especially on the operating conditions with the flow rates below 87% of the design flow rate for the drive end side. The absolute value of the shaft displacement is 0.37mm, which is more than 3 times as large as that at nominal operating condition. There exit a lasting time of large shaft displacements during pump startup and shutdown periods, and the largest value of shaft displacement at the drive end side happens during the pump startup process, which can be increase to 0.95mm. There exists relative large radial force, and the direction of which is exactly the same with the pump shaft displacement at the flow rate from 0.73Qn to 0.32Qn, and also meet the wear locations of the impeller seal rings.


2021 ◽  
Vol 9 (11) ◽  
pp. 1240
Author(s):  
Zhenfa Xu ◽  
Fanyu Kong ◽  
Hongli Zhang ◽  
Kun Zhang ◽  
Jiaqiong Wang ◽  
...  

Inducer is often used to improve the cavitation performance of pump. In order to study the cavitation characteristics of inducer under low flow condition of high-speed pump, high-speed photography technology was employed in this paper to carry out visual experiments on the inducer of a high-speed centrifugal pump. In low flow rates, Cavitation distribution and evolution among the inducer were captured. The experimental results revealed that a band-shaped backflow vortex in the inlet pipe would occur when the flow rate was less than 0.3 Qd. Moreover, the backflow vortex in the inlet pipe rotated with the inducer and the rotational speed of backflow vortex was approximately half of the inducer. The visualization test of 0.27 Qd was carried out: when the NPSH was greater than 6.72 m, the bubbles in the inlet pipe were asymmetrical; When the NPSH dropped to 5.41 m, the cavitation was becoming less asymmetrical; When NPSH dropped to 3.81 m, cavitation evolved to the deteriorating stage, plenty of bubbles entered into the main impeller, resulting in a rapid decline of pump performance. Furthermore, the cavitation performance was worse at an extreme flow rate, and the NPSH value of 0.27 Qd was 7.5% greater than that under design condition.


Author(s):  
Alan Duong

Cavitation is a phenomenon where liquids will vaporize when subjected to low pressures. Essentially, the pressure is reduced sufficiently such that the liquid boils at the given temperature. The highest pressure at which cavitation could occur is called the vapor pressure. However, the pressure associated with the onset of cavitation could be lower than the vapor pressure. This indicates the liquid exists under a meta-stable condition. The current research is investigating different aspects of cavitation and cavitating flow characteristics. Particle tracking using high-speed photography provided further insight as to what the velocity profile of cavitating flow may resemble. The research has shown that the cavitation that occurred in the current nozzle appears to have a laminar velocity profile. In the experiments that were conducted, it was also observed that as the back pressure of the downstream decreased, the volumetric flow rate would increase. However, a maximum volumetric flow rate was measured once the flow had begun cavitation regardless of the back pressure. This indicated that choked flow conditions likely exist within the nozzle. Choked flow within the nozzle indicates that near the region of the throat the fluid velocity has reached the speed of sound. Using high-speed photography, visualization of flow separation and recirculation was recorded. The information obtained from the research provides a more detailed description of the velocity profile near the onset of cavitation. The main objectives of this research were to obtain measurements of the overall flow for support of on-going research and analysis of nozzle flow cavitation. This study will provide a foundation for further and more detailed research into cavitation phenomena.


Author(s):  
Hamidreza G. Darabkhani ◽  
John E. Oakey ◽  
Yang Zhang

In this paper we report on experimental investigation of co-flow air velocity effects on the flickering behavior and stabilization mechanism of laminar natural gas diffusion flames (with more than 96% methane in the fuel composition). In this study, chemiluminescence and high speed photography along with digital image processing techniques have been used to study the change in global flame shape, the instability initiation point, the frequency and magnitude of the flame oscillation. It is found that the co-flow air is able to shift the location of the initiation point of the outer toroidal vortices created by Kevin Helmholtz types of instability. It then reaches a stage when outer toroidal vortices interact only with hot plume of gases further downstream of the visible flame. Once the toroidal structure is out of the flame zone the flickering of the flame will disappear naturally. This is in contrast with the effect of pressure which enhances formation and interaction of outer toroidal vortices with the flame due to essential changes at flow densities. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity is a stability controlling parameter. It has been found that a non-lifted laminar diffusion flame can be stabilized with a co-flow air velocity even less than half of the fuel jet exit velocity. The oscillation frequency was observed to increase with the co-flow rate. The frequency amplitudes, however, were observed to continuously decrease as the co-flow air was increasing. The oscillation magnitude and the oscillation wavelength were observed to decrease towards zero as the co-flow air was increasing. Whereas the average oscillating flame height behavior was observed to be bimodal. It was initially enhanced by the co-flow air then starts to decrease towards the stabilized level. This height was observed to remain almost constant after stabilization, despite further increase at air flow rate.


Author(s):  
Yakang Xia ◽  
Lyes Khezzar ◽  
Mohamed Alshehhi

Flow visualization using high speed photography is used to study the structure of two liquid and one air impinging turbulent jets. The break up structure is discussed and the resulting spray angle at large air flow rates is obtained. The spray angle increases with the air flow rate except for the case when the water jet velocity is so small that the flow rate of air does not have significant effects on the spray angle. Phase Doppler Anemometry measurements of liquid droplet sizes and velocities are also given in terms of radial profiles at several axial locations from the point of impingement.


Sign in / Sign up

Export Citation Format

Share Document