scholarly journals Life cycle cost and energy conservation for water system pumping station reconstruction

2020 ◽  
Vol 164 ◽  
pp. 01002
Author(s):  
Svetlana Maksimova ◽  
Anna Shkileva ◽  
Ekaterina Verevkina

The main goal of this study is evaluation of reconstruction options for water pumping stations, regarding various factors (equipment purchase cost, maintenance, energy consumption). The search for the most profitable solution was carried out using the life cycle cost methodology for the urban water supply system’s first lift pump station. An analysis of the operating modes of the pumping station was carried out using curves of pumps and system. It was found that the option with a higher purchase price has the best technological indicators, including energy consumption. The expediency of the complete replacement of pumping equipment is confirmed by an analysis of life cycle costs.

2021 ◽  
pp. 111-116
Author(s):  
YU. V. КОRCHEVSKAYA ◽  
◽  
I. A. TROTSENKO ◽  
E. E. NAZARKIN

Since reducing energy consumption is a priority for an enterprise, economic effi ciency in general is directly related to the use of pumping equipment. The demand for electricity for pumping equipment will depend on various factors: the operating modes of pumping stations and installations, the equipment used measures to reduce the cost of electricity consumed, etc. The current practice indicates extremely inefficient operation of pumping equipment. Currently, a large number of pumping stations of water supply and sanitation systems operate in an uneconomical mode. Very often, this is due to incorrect selection of pumping equipment, outdated pumping equipment, the operation of pumps in non- calculation mode. In addition, pumping equipment has been installed in many industries since the establishment of production. Such equipment is morally and technically outdated. Now,technological progress allows us to use more efficient equipment and materials that allow us to reduce energy consumption. The article presents an analysis of the energy consumption of a pumping station of technical water supply on the example of JSC «Omsk Kauchuk», a variant of modernization is proposed in order to reduce the consumption of electricity by pumping equipment. The need to modernize the pumping station of technical water supply is associated with a significant service life and high –energy consumption of pumping equipment. Two pump brands were selected and a comparative analysis was carried out. Based on calculations of energy consumption and technological characteristics, the most profitable and optimal version of the D6300-80-2b pump was chosen, since the pump performance is greater and the power consumption is less than that of the JETEX DS600-750 pump, as well as reducing the wear rate of operating elements, improving the pump’s suction capacity


2021 ◽  
pp. 117-124
Author(s):  
N. K. GUDKOVA ◽  
◽  
T. L. GORBUNOVA ◽  
N. I. МАTOVA

Since reducing energy consumption is a priority for an enterprise, economic effi ciency in general is directly related to the use of pumping equipment. The demand for electricity for pumping equipment will depend on various factors: the operating modes of pumping stations and installations, the equipment used measures to reduce the cost of electricity consumed, etc. The current practice indicates extremely inefficient operation of pumping equipment. Currently, a large number of pumping stations of water supply and sanitation systems operate in an uneconomical mode. Very often, this is due to incorrect selection of pumping equipment, outdated pumping equipment, the operation of pumps in non- calculation mode. In addition, pumping equipment has been installed in many industries since the establishment of production. Such equipment is morally and technically outdated. Now,technological progress allows us to use more efficient equipment and materials that allow us to reduce energy consumption. The article presents an analysis of the energy consumption of a pumping station of technical water supply on the example of JSC «Omsk Kauchuk», a variant of modernization is proposed in order to reduce the consumption of electricity by pumping equipment. The need to modernize the pumping station of technical water supply is associated with a significant service life and high –energy consumption of pumping equipment. Two pump brands were selected and a comparative analysis was carried out. Based on calculations of energy consumption and technological characteristics, the most profitable and optimal version of the D6300-80-2b pump was chosen, since the pump performance is greater and the power consumption is less than that of the JETEX DS600-750 pump, as well as reducing the wear rate of operating elements, improving the pump’s suction capacity


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2018 ◽  
Vol 61 (6) ◽  
pp. 1795-1810
Author(s):  
James Bambara ◽  
Andreas K. Athienitis

Abstract. The energy consumption of a building is significantly impacted by its envelope design, particularly for greenhouses where coverings typically provide high heat and daylight transmission. Energy and life cycle cost (LCC) analysis were used to identify the most cost-effective cladding design for a greenhouse located in Ottawa, Ontario, Canada (45.4° N) that employs supplemental lighting. The base case envelope design uses single glazing, whereas the two alternative designs consist of replacing the glass with twin-wall polycarbonate and adding foil-faced rigid insulation (permanent or movable) on the interior surface of the glass. All the alternative envelope designs increased electricity consumption for lighting and decreased heating energy use except when permanent or movable insulation was applied to the north wall and in the case of permanent insulation on the north wall plus polycarbonate on the east wall. This demonstrates how the use of reflective opaque insulation on the north wall can be beneficial for redirecting light onto the crops to achieve simultaneous reductions in electricity and heating energy costs. A maximum reduction in LCC of 5.5% (net savings of approximately $130,000) was achieved when permanent insulation was applied to the north and east walls plus polycarbonate on the west wall. This alternative envelope design increased electricity consumption for horticultural lighting by 4.3%, reduced heating energy use by 15.6%, and caused greenhouse gas emissions related to energy consumption to decrease by 14.7%. This analysis demonstrates how energy and economic analysis can be employed to determine the most suitable envelope design based on local climate and economic conditions. Keywords: Artificial lighting, Consistent daily light integral, Energy modeling, Envelope design, Greenhouse, Life cycle cost analysis, Light emitting diode, Local agriculture.


2014 ◽  
Vol 935 ◽  
pp. 112-117
Author(s):  
Hao Xie ◽  
Jing Wu

Life Cycle Cost (LCC) method can not only help users make economic decisions on a construction project, but also have a positive effect on popularizing building energy-saving technologies and reducing building energy consumption. However, LCC has not received due attention in China. This paper analyzes the main obstacles to popularizing LCC in China and explores the solving strategies of promoting LCC in China by means of the functional process theoretical model.


2017 ◽  
Vol 23 (2) ◽  
pp. 107-112
Author(s):  
Antonín Novotný ◽  
Dalibor Procházka

Abstract After several years of discussion and decision-making approaches Army of the Czech Republic to implement the purchase of multipurpose helicopters to replace the previously used, morally and physically obsolete attack helicopters Mi-24 / 34. The process of acquisition consists of many stages; it is not a simple matter and has its pitfalls. It is also a big, expensive and long-term acquisition in which the poor implementation can cause problems that are likely to affect the Army of the Czech Republic and its Air Force for many years. One of the decision-making process inputs is an estimate of Life Cycle Cost (LCC). For the estimation, many methods can be used. The paper deals with application of system dynamics to LCC estimation process. Partial models of utilization and support Life Cycle phases are presented, which can be further developed according to consecutive data availability. An influence of different helicopter operating modes on a Life Cycle Cost is demonstrated by means of simulation in Vensim application. The models, after verification and validation, can be used to support the acquisition process.


2010 ◽  
Vol 5 (2) ◽  
Author(s):  
Carsten Skovmose Kallesøe ◽  
Mick Eriksen

The main energy consumers in sewer networks are the sewage pumps. Therefore, to minimize the energy consumption, it is essential that these pumps operate under satisfactory conditions. Knowledge about the efficiency of the pumps and their operating conditions can help the pump station management to operate the system optimal. In the search for innovative solutions that can help the sewer management with this information, we propose a method that provides information on the pump flows, the inflow to a sewage pit, and an online estimate of the efficiency of the pump. All these information are obtained without a flow sensor. We argued that the calculated flow values can be used by the sewer management to optimize the operation on the sewer pumps, and the efficiency estimate can be used for optimal scheduling of maintain procedures. The flow and the efficiency estimations are exemplified on a pumping station of the sewer network in Herning, Denmark.


Sign in / Sign up

Export Citation Format

Share Document