Diurnal rhythms of standard metabolic rate and respiratory quotient in the coal tit (Periparus Ater, Aves) during the autumn-winter period

2014 ◽  
Vol 69 (4) ◽  
pp. 184-188
Author(s):  
V. V. Gavrilov ◽  
G. V. Morgunova
2016 ◽  
Vol 50 (1) ◽  
pp. 138-144
Author(s):  
Patrick J Ruhl ◽  
Robert N Chapman ◽  
John B. Dunning

1992 ◽  
Vol 40 (2) ◽  
pp. 111-121 ◽  
Author(s):  
M.J.W. Heetkamp ◽  
A.M. Henken ◽  
W. van der Hel ◽  
C.W. Scheele

From hatching to 42 days old, 80 broilers were exposed to varying periods of light (L) and dark (D) within 4-h periods (0.5L to 1.5L and 3.5D to 2.5D). Effects of lighting regimen (LR) and trough position (open (F2) compared with closed (F1)) during D-periods on heat production (H), activity-free (Hacf) and activity-related H (Hac), and respiratory quotient (RQ) were evaluated. At 0.5L and 0.67L, Hac was less than in the longer L-periods. The longer the L-period, the less active broilers were at the end of a L-period. In D-periods with F1, H and Hacf decreased more than with F2, while Hac was similar. After D-periods with F1, H and Hacf increased more than after D-periods with F2. This effect on H was greatest in short L-periods with F1. With 0.5L:3.5D and F1, broilers did not have enough feeding time, because at the end of the L-period afterwards, H and RQ were lower than with the longer L-periods. Thus, broilers will eat feed in the dark and the length of L-period may not be crucial, because in practice, feed will remain available in the dark. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2005 ◽  
Vol 90 (1) ◽  
pp. 409-413 ◽  
Author(s):  
M. R. Rizzo ◽  
D. Mari ◽  
M. Barbieri ◽  
E. Ragno ◽  
R. Grella ◽  
...  

2020 ◽  
Vol 34 (6) ◽  
pp. 1205-1214 ◽  
Author(s):  
Natalie Pilakouta ◽  
Shaun S. Killen ◽  
Bjarni K. Kristjánsson ◽  
Skúli Skúlason ◽  
Jan Lindström ◽  
...  

1976 ◽  
Vol 231 (3) ◽  
pp. 903-912 ◽  
Author(s):  
B Pinshow ◽  
MA Fedak ◽  
DR Battles ◽  
K Schmidt-Nielsen

During the antarctic winter emperor penguins (Aptenodytes forsteri) spend up to four mo fasting while they breed at rookeries 80 km or more from the sea, huddling close together in the cold. This breeding cycle makes exceptional demands on their energy reserves, and we therefore studied their thermoregulation and locomotion. Rates of metabolism were measured in five birds (mean body mass, 23.37 kg) at ambient temperatures ranging from 25 to -47 degrees C. Between 20 and -10 degrees C the metabolic rate (standard metabolic rate (SMR)) remained neraly constant, about 42.9 W. Below -10 degrees C metabolic rate increased lineraly with decreasing ambient temperature and at -47 degrees C it was 70% above the SMR. Mean thermal conductance below -10 degrees C was 1.57 W m-2 degrees C-1. Metabolic rate during treadmill walking increased linearly with increasing speed. Our data suggest that walking 200 km (from the sea to the rookery and back) requires less than 15% of the energy reserves of a breeding male emperor penguin initially weighing 35 kg. The high energy requirement for thermoregulation (about 85%) would, in the absence of huddling, probably exceed the total energy reserves.


2000 ◽  
pp. 413-430 ◽  
Author(s):  
Martin D. Brand ◽  
Tammie Bishop ◽  
Robert G. Boutilier ◽  
Julie St-Pierre

2011 ◽  
Vol 279 (1727) ◽  
pp. 357-364 ◽  
Author(s):  
Shaun S. Killen ◽  
Stefano Marras ◽  
John F. Steffensen ◽  
David J. McKenzie

The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag at the leading edge of schools, where they could maximize food intake while possibly retaining sufficient AS for other physiological functions. SMR was never related to position, suggesting that high maintenance costs do not necessarily motivate individuals to occupy frontal positions. In the wild, shifting of individuals to optimal spatial positions during changing conditions could influence structure or movement of entire schools.


1991 ◽  
Vol 39 (1) ◽  
pp. 57 ◽  
Author(s):  
DB Lindenmayer ◽  
RB Cunningham ◽  
MT Tanton ◽  
HA Nix

The time and height of emergence from den trees occupied by various species of arboreal marsupials inhabiting the montane ash forests of the Central Highlands of Victoria, in south-east Australia, were recorded from September 1988 to January 1989. There were significant differences in emergence time among most species of arboreal marsupials. Emergence time was strongly correlated with published values of body weight, field metabolic rate and standard metabolic rate. The entrance to the nest was higher in gliding species than those which are non-volant. Small species exhibited a significant preference for den sites with a hole as the entrance. The entrance of a den occupied by large species was typically a hole in a hollow branch or spout. The selection of den sites was related to the body size of the occupant. Differences in the type and height of the entrance to the nest, together with the time of emergence from the den, indicate partitioning of the nest tree resource between the various species inhabiting montane ash forests.


The Auk ◽  
1984 ◽  
Vol 101 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Elizabeth N. Flint ◽  
Kenneth A. Nagy

Abstract The CO2 production of free-ranging Sooty Terns (Sterna fuscata) was measured using doubly labeled water (HTO-18). Metabolic rate during flight was determined to be 4.8 times standard metabolic rate (SMR). This value is much lower than estimates of flight metabolism predicted from previously published equations. Observations of these birds at sea indicate that flapping flight predominated at the windspeeds (0-5 m/s) that prevailed during our measurement periods, so factors other than gliding must account for the comparatively low flight metabolism we measured. Sooty Tern flight metabolism is similar to that of some other birds, such as swallows and swifts, that also have high aspect ratios and low wing loadings.


Sign in / Sign up

Export Citation Format

Share Document