Mathematical Model of Optimization of Controlled Parameters of the Plasma Surfacing Technological Process of Wear-Resistant Coatings

2020 ◽  
Vol 49 (9) ◽  
pp. 823-828
Author(s):  
S. V. Kartsev
2015 ◽  
Vol 799-800 ◽  
pp. 418-422
Author(s):  
E.L. Vardanyan ◽  
V.V. Budilov ◽  
I.I. Yagafarov ◽  
K.N. Ramazanov

The problem of punching tools resistance increasing is investigated. Methods for intermetallic coatings synthesis are investigated. Mathematical model of vacuum ion-plasma deposition process allowing predicting coatings composition basing on intermetallic system Ti-Al was developed. Experimental verification confirmed the adequacy of the computer model. The technology hardening punching tools with wear-resistant coatings deposition based on intermetallic Ti-Al system on pre-nitriding surface in vacuum was developed. Production tests of the hardened punching tools were carried out.


2021 ◽  
Vol 3 (144) ◽  
pp. 108-115
Author(s):  
Said N. Sharifullin ◽  
◽  
Ayzat S. Akhmetzyanov ◽  
Tat’yana V. Toporkova

The article considers a new direction in optimizing the process of plasma hardening of the surfaces of cutting elements of agricultural machines based on the use of electric spark discharge energy. (Research purpose) The research purpose is in optimizing the technological process of hardening the surfaces of cutting elements of agricultural machines by the method of electric spark alloying of carbide material elements. (Materials and methods) A device under RF patent No. 2655420, developed by the scientific supervisor of the subject S. N. Sharifullin, was used for electric spark alloying. A tungsten-cobalt rod with a diameter of 4 millimeters, consisting of 94 percent tungsten and 6 percent cobalt, was used as the electrode material for this case. The processed sample of 65G steel, which is the main material of the working bodies of tillage equipment. The physical and chemical properties of the samples were studied with a scanning electron microscope EVO 50 XVP from Zeiss. (Results and discussion) After the electric spark treatment of the alloyed elements, there were about ten, while their spectra also appear at different irradiation energies. The alloyed elements in the surface layer are not only separate, but also in the form of compounds with other elements. Such alloying elements as carbon, cobalt and tungsten appeared in a noticeable amount in the surface layer. Electric spark treatment allows increasing the microhardness of the surfaces of cutting elements of tillage equipment up to three times. (Conclusions) When developing a mathematical model of the electric spark formation of wear-resistant coatings on the treated surfaces, it is necessary to use the energy conservation equations of the electron gas, the Maxwell equations, the continuity and momentum equations. The complex solution of these equations makes it possible to obtain the required output parameters depending on the input ones.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022034
Author(s):  
V Kretinin ◽  
A Teppoev ◽  
V Sokolova

Abstract The efficiency of the working bodies of tillage forestry machines is determined by the sharpness of their soil-cutting elements. The purpose of the study is to substantiate the modes of the technological process of strengthening and recovery of cutting working forestry machines by the method of gas-flame spraying of wear-resistant coatings to increase their wear resistance and preserve the blade sharpness by implementing the self-sharpening effect, which allows increasing their life by 2-3 times. Technical and economic indicators of the gas-flame spraying process, as well as the scope of its application, depend on how well the technological modes of the spraying process are selected. The relevance of the topic is due to the need to increase the durability of tillage tools by strengthening their surfaces treatment. Such effective methods include the technology of recovery and strengthening of the working bodies of tillage machines using the technology of gas-flame spraying. In this regard, the issues of conducting research have become particularly relevant: to identify the relationships of technological parameters during the gas-flame application of wear-resistant coatings; to change the strength characteristics of the material of parts during their recovery, providing the necessary reliability and durability.


2011 ◽  
Vol 189-193 ◽  
pp. 3633-3639
Author(s):  
Ming Der Jean ◽  
Yih Hwang Yang ◽  
Tzu Hsuan Chien

This study presented the desirability function based on Taguchi designed experiments to solve multiple responses statistical optimal problems for the tungsten carbide/cobalt (WC-Co) coatings of high-velocity-oxygen-fuel (HVOF) processes. The eight control factors based on L18 arrays were conducted and the multi-responses of wear-resistant coatings such as hardness, deposited thickness and wear rate were evaluated simultaneously in the desirability-based experiments. Based on desirability analysis, the optimal settings have been identified, and the impacts of control factors are determined by analysis of variance on the multi-responses. Further, a confirmation run was conducted to validate the tests. Experimental results have shown that the hardness increased by 16.61% and the deposited thickness improved by 10.50%, while the wear rate decreased by 34.03%. It was clear that confirmation tests are greatly improved by way of the desirability-based multi-responses on HVOF WC-Co experiments, and these findings achieved the desired values on wear-resistant coatings. The proposed procedure was applied at HVOF sprayed WC-Co experiments, and the implementation results demonstrated its feasibility and effectiveness to maximize hardness, make a target of deposited thickness value and minimize wear rate by a HVOF.


1990 ◽  
Vol 26 (9) ◽  
pp. 479-482
Author(s):  
E. E. Aver'yanov ◽  
R. M. Galimzyanov ◽  
K. Z. Gilyazova ◽  
V. A. Popov ◽  
A. V. Rabinovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document