Nanostructured Strain-Hardened Aluminum–Magnesium Alloys Modified by C60 Fullerene Obtained by Powder Metallurgy: 2. The Effect of Magnesium Concentration on Physical and Mechanical Properties

2021 ◽  
Vol 62 (3) ◽  
pp. 368-374
Author(s):  
I. A. Evdokimov ◽  
R. R. Khayrullin ◽  
R. Kh. Bagramov ◽  
S. A. Perfilov ◽  
A. A. Pozdnyakov ◽  
...  
Author(s):  
I. A. Evdokimov ◽  
R. R. Khayrullin ◽  
R. Kh. Bagramov ◽  
S. A. Perfilov ◽  
A. A. Pozdnyakov ◽  
...  

This paper is intended to continue the studies of magnesium effects on the structural phase composition, physical and mechanical properties of the nanostructured strain-hardened aluminum-magnesium alloys modified with C60 fullerene [1]. Previously obtained mechanically alloyed composite powders [1] were consolidated by direct hot extrusion method. Consolidation parameters were chosen based on previous studies of the structure and phase composition formation during mechanical alloying and heat treatment. It was found that an increase in magnesium concentration improves mechanical properties of extruded nanosructured composite materials, and additives modified by C60 fullerene stabilize the grain structure and slow down decomposition of α solid solution of magnesium in aluminum to 300 °C. Under similar thermobaric treatment Al82Mg18 (AMg18) not modified with C60 demonstrates a reduced α solid solution lattice constant and an increased average crystallite size. These processes are accompanied by sequential formation of γ, β′, and β phases, while γ and β′ are intermediate phases. The grain structure of extruded samples is typical for materials obtained in this way – grains are closely packed, elongated and oriented along the extrusion axis. The grain structure of extruded samples inherits the morphology of mechanically alloyed powders. Thus, mechanical alloying methods followed by intense plastic deformation (extrusion) improved mechanical properties significantly. Materials with ultimate tensile strength of 880 MPa; ultimate bending strength of 1100 MPa; microhardness up to 3300 MPa; and with the same density of 2.4–2.6 g/cm3 were obtained. This result demonstrates the prospects for using powder metallurgy techniques in the production of new nanostructured composite materials modified by C60 fullerene with improved physical and mechanical properties.


2020 ◽  
Vol 1012 ◽  
pp. 3-8
Author(s):  
A.C.G. Silva ◽  
Hellen C.P. Oliveira ◽  
Thales Eduardo Leal ◽  
Paulo Santos Assis

The objective of this paper is to study Fe65Nb-Cu metal matrices, thus varying the content of the pre-alloyed Fe65Nb powder from 10% to 100%. Therefore, powders of Fe65Nb and Cu were used, innovating in the chemical composition of the commonly used matrices. The objective is to evaluate the substitution of Co (toxic element, commonly used) by Nb (98.2% of reserves are Brazilian). For the sintering of the samples it was used hot pressing technique. The parameters were set at: 850°C / 35MPa / 3min. The sintered bodies underwent SEM/EDS analysis and density and porosity measurements were performed. From the results it is possible to say that the compositions of (10% and 30% Fe65Nb) presented the best physical and mechanical properties. The relative density decreases for the compositions with 40%, 50% and 60% Fe65Nb is justified by the presence of fragile particles in metal matrices, since they require more energy in order to efficiently transport matter (diffusion) in a solid state.


Author(s):  
M. A. Salem ◽  
I. G. El-Batanony ◽  
M. Ghanem ◽  
Mohamed Ibrahim Abd ElAal

Different Al-SiC metal matrix composites (MMCs) with a different matrix, reinforcement sizes, and volume fractions were fabricated using ball milling (BM) and powder metallurgy (PM) techniques. Al and Al-SiC composites with different volume fractions were milled for 120 h. Then, the Al and Al-SiC composites were pressed under 125 MPa and finally sintered at 450 °C. Moreover, microsize and combination between micro and nano sizes Al-SiC samples were prepared by the same way. The effect of the Al matrix, SiC reinforcement sizes and the SiC volume fraction on the microstructure evolution, physical and mechanical properties of the produced composites was investigated. The BM and powder metallurgy techniques followed by sintering produce fully dense Al-SiC composite samples with different matrix and reinforcement sizes. The SiC particle size was observed to have a higher effect on the thermal conductivity, electrical resistivity, and microhardness of the produced composites than that of the SiC volume fraction. The decreasing of the Al and SiC particle sizes and increasing of the SiC volume fraction deteriorate the physical properties. On the other hand, the microhardness was enhanced with the decreasing of the Al, SiC particle sizes and the increasing of the SiC volume fraction.


2012 ◽  
Vol 545 ◽  
pp. 247-250 ◽  
Author(s):  
Subramanian Jayalakshmi ◽  
Khoo Chee Guan ◽  
Kuma Joshua ◽  
Manoj Gupta

Magnesium alloys are the lightest structural materials known that are increasingly replacing steel and aluminium. However, due to its flammable nature, protective atmospheres are employed during Mg-alloy production. In this novel work, Mg-Al alloys with ~3 and ~5 wt.% Al were processed in CO2atmosphere, so as to utilize the CO2during the melting process. The cast Mg-Al alloys were extruded and studied for their structural, physical and mechanical properties. Results showed improvements in mechanical properties such as hardness, tensile strength and compressive yield strength. The improvement in properties was attributed to thein situformation of Al4C3arising due to molten metal-carbon interaction. It is noteworthy that the incorporation of CO2during processing did not adversely affect the mechanical properties of the alloys. Further, the process is eco-friendly as it not only utilized CO2, but also eliminates use of harmful cover gases.


2011 ◽  
Vol 32 (8-9) ◽  
pp. 4417-4423 ◽  
Author(s):  
Hossein Abdizadeh ◽  
Maziar Ashuri ◽  
Pooyan Tavakoli Moghadam ◽  
Arshia Nouribahadory ◽  
Hamid Reza Baharvandi

1996 ◽  
Vol 43 (11) ◽  
pp. 1350-1353 ◽  
Author(s):  
Hajime Iwasaki ◽  
Kisho Yanase ◽  
Takasuke Mori ◽  
Mamoru Mabuchi ◽  
Kenji Higashi

2010 ◽  
Vol 146-147 ◽  
pp. 734-737
Author(s):  
Hui Yu ◽  
Hua Shun Yu ◽  
Zhen Ya Zhang ◽  
Guang Hui Min ◽  
Cheng Chen

In this study, AZ91 and SiC particulates reinforced AZ91 (SiCp/AZ91) magnesium alloys were successfully fabricated using rapid solidification/powder metallurgy technique followed by hot extrusion. Microstructural evolution and mechanical properties of the monolithic AZ91 and SiCp/AZ91 magnesium alloys were evaluated. SiC particulates were well distributed with only few agglomerated particles. The porosity level and microhardness increased as SiCp content increased because the increased surface area of SiCp, harder ceramic phases and SiCp acted obstacles to the motion of dislocations. In addition, an increase in particulate reinforcement content was observed to decrease mechanical properties of the composite compared with the unreinforced counterpart due to increasing agglomerating regions and porosity, brittle interface debonding between matrix and SiCp.


Sign in / Sign up

Export Citation Format

Share Document