Structural, Physical and Mechanical Properties of Mg-Al Alloys Processed under CO2 Atmosphere

2012 ◽  
Vol 545 ◽  
pp. 247-250 ◽  
Author(s):  
Subramanian Jayalakshmi ◽  
Khoo Chee Guan ◽  
Kuma Joshua ◽  
Manoj Gupta

Magnesium alloys are the lightest structural materials known that are increasingly replacing steel and aluminium. However, due to its flammable nature, protective atmospheres are employed during Mg-alloy production. In this novel work, Mg-Al alloys with ~3 and ~5 wt.% Al were processed in CO2atmosphere, so as to utilize the CO2during the melting process. The cast Mg-Al alloys were extruded and studied for their structural, physical and mechanical properties. Results showed improvements in mechanical properties such as hardness, tensile strength and compressive yield strength. The improvement in properties was attributed to thein situformation of Al4C3arising due to molten metal-carbon interaction. It is noteworthy that the incorporation of CO2during processing did not adversely affect the mechanical properties of the alloys. Further, the process is eco-friendly as it not only utilized CO2, but also eliminates use of harmful cover gases.

1981 ◽  
Vol 12 ◽  
Author(s):  
A. Kolb-Telieps ◽  
B.L. Mordike ◽  
M. Mrowiec

ABSTRACTCu-Nb composite wires were produced from powder, electrolytically coated with tin and annealed to convert the Nb fibres to Nb 3Sn. The content was varied between 10 wt % and 40 wt %. The superconducting properties of the wires were determined. The mechanical properties, tensile strength, yield strength and ductility were measured as a function of volume fraction and deformation over a wide temperature range. The results are compared with those for wires produced by different techniques.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


2010 ◽  
Vol 152-153 ◽  
pp. 1083-1087
Author(s):  
Bo Wang ◽  
Yu Tao Zhao ◽  
Song Li Zhang ◽  
Gang Chen ◽  
Xiao Nong Cheng

In-situ (Al2O3+Al3Zr)p/A356 composites were synthesized by melt reaction technology and the effects of yttrium on microstructure and mechanical properties of the composites are investigated. The results indicate that the reinforced particulates Al2O3 and Al3Zr become smaller in size with yttrium addition, the sizes are about 0.5~2μm. The distribution becomes more homogeneous, the morphologies are spheroid-shape and ellipsoid-shape, the ambitus is blunt. The mechanical properties test results show the mechanical properties of the composites are greatly enhanced. With 0.4wt.% yttrium addition, the ultimate tensile strength and yield strength of the composites reach to 388MPa and 296MPa, which are increased 35.6% and 37.0% comparing with no yttrium addition, respectively. The effect mechanisms of yttrium are discussed.


2010 ◽  
Vol 97-101 ◽  
pp. 801-804
Author(s):  
Jing Yuan Li ◽  
Xiao Lei Du

Two groups of magnesium alloys with various Al and Zn components are studied in this paper. One group of alloys are constant Al content of about 6% and various Zn content from 0 to 3%, another group are constant Zn content of about 0.4% and various Al content from 0 to 6%. The microstructures and mechanical properties of these alloys are investigated in as-cast and homogenized at 380°C for 15h. The results show that the tensile strength increases but yield strength decreases after homogenizing treatment. It can also be found that the morphology of second phrase and the size of grain exert the more effect on the mechanical properties than Zn content does. The alloys with uniform, fine and non-dendrite microstructure exhibit both high strength and elongation regardless of Zn content. On the other hand, the tensile strength and yield strength elevate significantly as Al content increases, and the elongation has a peak value in Al content of about 1.90%. The results show that the as-cast magnesium alloys with Al content of 5.6~6.0% and Zn content of 0.6~1.0% exhibit the best comprehensive mechanical properties.


2007 ◽  
Vol 546-549 ◽  
pp. 391-394
Author(s):  
Ding Fei Zhang ◽  
Li Ping Ren ◽  
Hong Ju Zhang ◽  
Wei Yuang

Developing new alloys and techniques is important for the applications of magnesium alloy products. The greatest challenge in the area is to exploit new wrought magnesium alloys[1]. In this paper, the effects of Zn addition on the microstructures and mechanical properties of the MZK60 wrought alloy which is modified from ZK60 have been investigated. The microstructures of these alloys at various states were evaluated by optical microscopy. The mechanical properties at room temperature of these alloys were studied systematically by tensile test. Experimental results indicated that increasing Zn content to 7~10%wt is able to get not only higher tensile strength and yield strength, but also higher elongation.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 644
Author(s):  
Wenyan Zhang ◽  
Hua Zhang ◽  
Lifei Wang ◽  
Jianfeng Fan ◽  
Xia Li ◽  
...  

AZ31 magnesium alloy sheets were prepared by low-speed extrusion at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The microstructure evolution and mechanical properties of extruded AZ31 magnesium alloy sheets were studied. Results indicate that the low-speed extrusion obviously improved the microstructure of magnesium alloys. As the extrusion temperature decreased, the grain size for the produced AZ31 magnesium alloy sheets decreased, and the (0001) basal texture intensity of the extruded sheets increased. The yield strength and tensile strength of the extruded sheets greatly increased as the extrusion temperature decreased. The AZ31 magnesium alloy sheet prepared by low-speed extrusion at 350 °C exhibited the finest grain size and the best mechanical properties. The average grain size, yield strength, tensile strength, and elongation of the extruded sheet prepared by low-speed extrusion at 350 °C were ~2.7 μm, ~226 MPa, ~353 MPa, and ~16.7%, respectively. These properties indicate the excellent mechanical properties of the extruded sheets prepared by low-speed extrusion. The grain refinement effect and mechanical properties of the extruded sheets produced in this work were obviously superior to those of magnesium alloys prepared using traditional extrusion or rolling methods reported in other related studies.


Author(s):  
Jaroslaw Wozniak ◽  
Mateusz Petrus ◽  
Marek Kostecki ◽  
Tomasz Cygan ◽  
Andrzej Olszyna

Abstract In this study, AA6061 matrix composites reinforced with multilayer graphene and MoS2 were analyzed. The composites were prepared by powder metallurgy using the spark plasma sintering and spark plasma texturing methods. Microstructure, physical and mechanical properties were investigated and compared with unreinforced AA6061 sinter and AA6061 sheet plate. The results showed that the application of spark plasma texturing positively influences the relative density and compressive yield strength of AA6061 matrix composites. Moreover, in composites with MoS2, significant differences in compressive yield strength between the centre and the edge of the sintered compacts were noticed. These differences are related to the formation of the MoAl12 phase as a result of the temperature gradient generated in the graphite die during sintering by the spark plasma texturing.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1829
Author(s):  
Yu Quan ◽  
Baotong Hu ◽  
Shuai Fu ◽  
Detian Wan ◽  
Yiwang Bao ◽  
...  

In this paper, in situ V2C-reinforced Cu composites were successfully fabricated by hot pressing at 750 °C under 25 MPa using Cu and V2SnC powders. Due to decomposition of V2SnC to V2C and Sn during sintering, Sn atoms entered the crystal structure of Cu. Therefore, final compositions of composites consisted of Cu(Sn) and V2C phases. Here, copper composites with 0, 5, 10, 20, and 30 vol.% V2C were designed. Their microstructures and physical and mechanical properties were systematically investigated. It was observed that with increasing V2C content, electrical conductivity decreased from 0.589 × 108 S·m−1 to 0.034 × 108 S·m−1 and thermal conductivity decreased from 384.36 W⋅m−1⋅K−1 to 24.65 W·m−1·K−1, while Vickers hardness increased from 52.6 HV to 334 HV. Furthermore, it was found that composites with 20 vol.% V2C had the highest tensile strength (440 MPa).


2021 ◽  
Vol 15 ◽  
pp. 181-188
Author(s):  
M. V. Klychnikova ◽  
Kyaw Ye Ko

In this work, it is shown that the method of the in situ preparation of Cu/LLDPE by combining the formation of a composite and a nanodispersed phase in the viscous-flow state of a polymer makes it possible to achieve a uniform distribution of nanoparticles in the matrix and effectively regulate their mechanical and functional properties. The optimal concentration of Cu nanofiller was found to be 2-5%, allowing to achieve the best mechanical properties. Comparative analysis of the physical and mechanical properties of Cu/LLDPE nanocomposites obtained by various methods shows that the deformation and strength characteristics of the 3CuLLDPE nanocomposite obtained by the in situ method are improved in comparison with the properties of the 3CuLLDPE nanocomposite, prepared by ex situ method. The relationship between the filler content and the modulus of elasticity/tensile strength has been determined. With an increase in the filler content, the elastic modulus increases by 10-20%, and the tensile strength decreases by 30%. Elongation at break for samples with nanofiller content up to 3 wt. % higher than unfilled polymer


2021 ◽  
Vol 1045 ◽  
pp. 237-245
Author(s):  
Andrii H. Prysiazhnyi ◽  
Volodymyr V. Kukhar ◽  
Vadym Hornostai ◽  
Ekaterina Kudinova ◽  
Maryna Korenko ◽  
...  

The problem urgency for determining the optimal rolling and heat treatment schedules for providing the required indices of heavy plates physical and mechanical properties is shown. The use of statistical mathematical models for solving this problem is substantiated and the methodology for their design is described. Statistical mathematical models were designed using the mathematical statistics methods and Data Mining tools to determine the yield strength, ultimate tensile strength and percent elongation for 10Mn2VNb steel plates rolled under 3600 heavy plate mill conditions. Software for the numerical implementation of these statistical mathematical models has been developed. Applied software has been developed for the numerical implementation of the statistical mathematical models for predicting the heavy plate’s mechanical properties, and high calculation accuracy has been confirmed with the ones help: 95.82% for the yield strength, 96.78% for the ultimate tensile strength, and 91.48% for the percent elongation. The regularities of the influence for finish rolling factual temperature in the finishing stand of 3600 heavy plate mill and the plate thickness on 10Mn2VNb pipe steel physical and mechanical properties were identified by processing the database and using the designed software.


Sign in / Sign up

Export Citation Format

Share Document