Longitudinal Edge Effect Compensation in Induction Machines with an Open Magnetic Circuit

2020 ◽  
Vol 91 (11) ◽  
pp. 709-713
Author(s):  
V. V. Tiunov
2022 ◽  
Vol 1211 (1) ◽  
pp. 012015
Author(s):  
A N Kachanov ◽  
Y S Stepanov ◽  
N A Kachanov ◽  
V A Chernyshov ◽  
D A Korenkov

Abstract The article discusses possible options for a low-temperature induction heating system (LTIHS) of flat metal products in a traveling electromagnetic field. The problem of calculating eddy currents, active and reactive powers induced in a heated flat object, as well as electromagnetic forces acting on the object moving it in a given direction, is posed and solved. A mathematical model has been developed that takes into account the dependence of the influence on the main parameters of the electromagnetic field of the following factors: geometric dimensions of the air gap between the poles of the magnetic circuit and the heated flat body; the longitudinal edge effect caused by the open circuit of the magnetic circuit of the inductor, as well as the transverse edge effect associated with the appearance of the longitudinal components of eddy currents in a heated flat object. The solution of particular problems of LTIHS in one- and two-dimensional formulation allows them to be simplified and to perform calculations for various design variants of induction heating devices with a traveling electromagnetic field, using a one-dimensional model that explicitly takes into account the features of electromagnetic processes in the systems under study.


Author(s):  
Ivan V. Kizhaev ◽  
Viktor N. Timofeev ◽  
Maxim Y. Khatsayuk

This article analyzes the electromagnetic field of a flat linear induction machine with an analytical method of mathematical modeling. Graphs of the electromagnetic characteristics of the machines were obtained, taking into account the longitudinal edge effect at various values of slip and coefficients of quality factor. Also made a comparative assessment of the effect of the longitudinal edge effect on the performance of the machine


2019 ◽  
Vol 5 (2) ◽  
pp. 60-69 ◽  
Author(s):  
Vladimir A. Solomin ◽  
Andrei V. Solomin ◽  
Anastasia A. Chekhova ◽  
Larisa L. Zamchina ◽  
Nadezda A. Trubitsina

Background: At high speeds of motion of the magnetic-levitation transport (MLT), linear induction motors (LIM) have a secondary longitudinal edge effect (SLEE). SLEE occurs when magnetic field of inductor interacts with the currents of the secondary element (SE) outside the MLT crew. SLEE reduces the efficiency of traction LIM. Therefore, the task of reducing the influence of SLEE is relevant. Aim: Development and research of a linear induction motor without a secondary longitudinal edge effect. Methods: To achieve this aim, new designs of linear induction motors have been proposed, which do not have a SLEE. The secondary element of the LIM (track structure of the MLT) is made of cylindrical conductive rods installed with the possibility of rotation. Traction LIM of the MLT equipped with two brushes that close the rods of the SE within the length of the inductor. When the MLT crew moves, the rods outside the inductor are not closed by brushes and there is no current in them. There will be no SLEE. Another method to solve this problem is using reed switches to close and open the rods of the secondary element. Results: The possibility of increasing the efficiency of the LIM has been achieved.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2340 ◽  
Author(s):  
Manuel Pineda-Sanchez ◽  
Ruben Puche-Panadero ◽  
Javier Martinez-Roman ◽  
Angel Sapena-Bano ◽  
Martin Riera-Guasp ◽  
...  

The development of advanced fault diagnostic systems for induction machines through the stator current requires accurate and fast models that can simulate the machine under faulty conditions, both in steady-state and in transient regime. These models are far more complex than the models used for healthy machines, because one of the effect of the faults is to change the winding configurations (broken bar faults, rotor asymmetries, and inter-turn short circuits) or the magnetic circuit (eccentricity and bearing faults). This produces a change of the self and mutual phase inductances, which induces in the stator currents the characteristic fault harmonics used to detect and to quantify the fault. The development of a machine model that can reflect these changes is a challenging task, which is addressed in this work with a novel approach, based on the concept of partial inductances. Instead of developing the machine model based on the phases’ coils, it is developed using the partial inductance of a single conductor, obtained through the magnetic vector potential, and combining the partial inductances of all the conductors with a fast Fourier transform for obtaining the phases’ inductances. The proposed method is validated using a commercial induction motor with forced broken bars.


Author(s):  
Mohamed Omar Younsi ◽  
Olivier Ninet ◽  
Fabrice Morganti ◽  
Jean-Philippe Lecointe ◽  
Farid Zidat ◽  
...  

Purpose This paper aims to study the influence of supply voltage variations on the external magnetic field emitted by grid-powered induction machines (IMs). Design/methodology/approach Two models are developed in the paper to analyse, for different supply voltage values, the influence of the variations of the magnetizing voltage for which there is a link with the tangential component of the external flux. The first is an analytical model based on the IM single-phase-equivalent circuit with variable magnetizing reactance to take into account the saturation of the magnetic circuit. The second is a numerical finite element simulation to model the same phenomenon. Results of both models are analysed with experimental measures of the external flux. Findings The study shows that the amplitude of the external field strongly depends on supply voltage values. Research limitations/implications The investigation is mainly focused on the tangential component of the external magnetic field which is of high importance concerning the applicability of non-invasive methods of diagnosis, as electromagnetic torque estimation developed by the authors or internal fault determination. Originality/value The originality of the paper concerns the characterization of the external flux with the supply voltage for IMs. It is shown that the magnetic circuit radiates external flux differently with the load and with the supply voltage.


2020 ◽  
Vol 6 (4) ◽  
pp. 5-24
Author(s):  
Viktor V. Nikitin ◽  
Vladimir M. Strepetov

The development of transport infrastructure of large cities with high population density and development should be carried out on the basis of innovative technical solutions, that allow to simplify the conditions of laying of tracks, reduce the cost of construction, reduce noise, provide comfort to passengers and reduce the cost of operating rolling stock. One such solution, the effectiveness of which is confirmed by foreign experience, is the use of linear asynchronous traction drive (LATD) in urban rail and maglev transport systems. This, in particular, allows to increase the allowable value of slope paths to 6065, reduce the vertical dimensions of rolling stock to 3.15 m, reduce the diameter of the tunnel by 2530%. The release of the wheel pair from the function of the implementation of traction effort makes it possible to apply on the wagons the articulated semi-frames of trolleys, that ensures better rolling stock in curves, and as a result - less wear of wheels and rails and less noise. This article analyzes the advantages and disadvantages of LATD compared to the traction drive of traditional execution, considers variants of constructive performance of linear induction motors (LIM), processes of electromechanical energy conversion in LIM, the option of building a LATD control system is presented. The article examines the flat LIM, which have found use in the transport systems of major cities in Asia and America. The processes of energy conversion in LIM are distinguished by the presence of a longitudinal edge effect, which determines the distortion of the resulting magnetic field, which is manifested in the reduction of induction and the displacement of the peak of the induction distribution curve to the escaping edge of the inductor. This effect is particularly manifested in high-speed LIMs with high quality. When the linearity of the magnetic environment is allowed, the resulting electromagnetic force of the LIM can be considered as the sum of electromagnetic forces created by the main field, as well as the direct and reverse fields of the longitudinal edge effect. The edge effects reduce efficiency and power ratio of LIM. The article discusses ways to compensate for the edge effects, as well as an overview of the world experience of the use of LATD in rail and maglev transport systems. The advantages of LATD and the world experience of its use suggest that for urban transport systems at speeds of up to 100-120 km/h this drive can be a real competition to traditional urban rail systems.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Vladimir L. Lanin ◽  
Evgeniy Ratnikau ◽  
Alexander D. Hatskevich

Improving the efficiency of induction heating of parts in the air gap of the magnetic circuit is associated with the use of surface and edge effects. Through modeling in ANSYS Electromagnetics Suite 19.2 and experimental studies identified patterns of edge effect in the heated parts. To ensure the uniformity of induction heating of small parts and reduce the soldering time, the electrical switch of soldered parts is used, which with the help of device controller forms a secondary circuit with low electrical resistance and high density of eddy currents.


2015 ◽  
Vol 30 (2) ◽  
pp. 522-532 ◽  
Author(s):  
Dong Wang ◽  
Xinzhen Wu ◽  
Junquan Chen ◽  
Yunjun Guo ◽  
Siwei Cheng

Sign in / Sign up

Export Citation Format

Share Document