scholarly journals Elucidating the Role of Nrf2 Factor Interactions in Various Disorders of Human System and It’s Proteomic Approaches: A Novel Study

Author(s):  
Aparajita Chakraborty

Nuclear factor erythroid 2-related factor 2 (Nrf2), which is also known as nuclear factor erythroid-derived-like-2, is a transcription factor which is encoded by the NFE2L2 gene. It is a basic leucine zipper (bZIP) protein which coordinates the basal and stress-inducible activation of a vast array of cytoprotective genes. It modulates a cellular antioxidant response program and plays a major role in the protection against oxidants and electrophiles; extracellular and intracellular oxidant/electrophiles have great contributions to the damages in cellular macromolecules such as proteins, lipids or DNA. Keap1 protein which is a regulator of Nrf2, is a highly redox-sensitive member of BTB-Kelch family assembling with Cul3 protein to form a Cullin-RING E3 ligase complex for Nrf2 degradation. Thus, this factor is a regulator of many processes of life and it’s signalling system (Nrf2-KEAP-1-ARE pathway) has been found to participate in various ocular or eye diseases and even other systemic diseases such as respiratory disease, chronic diseases or cancer. In microbial infections, the host oxidative stress response may lead to the production of cytoprotective molecules, which in turn induces the activation of cellular Nrf2 factor. The crystallins or eye lens proteins, (?B-crystallin being one of them) may possibly interact with Nrf2 factor and regulate oxidative stress, but it is yet to be deciphered. Proteomic studies may provide valuable information, regarding such detailed protein interactions and their pathways especially in case of diseases or infections in the upcoming days.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Bai ◽  
Xiaolu Wang ◽  
Song Zhao ◽  
Chunye Ma ◽  
Jiuwei Cui ◽  
...  

Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by bothin vivoand epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1610
Author(s):  
Reziyamu Wufuer ◽  
Zhuo Fan ◽  
Keli Liu ◽  
Yiguo Zhang

In the past 25 years, Nrf2 (nuclear factor erythroid 2-related factor 2, also called NFE2L2) had been preferentially parsed as a master hub of regulating antioxidant, detoxification, and cytoprotective genes; albeit as a matter of fact that Nrf1 (nuclear factor erythroid 2-related factor 1, also called NFE2L1)—rather than Nrf2—is indispensable for cell homeostasis and organ integrity during normal growth and development. Herein, distinct genotypic cell lines (i.e., Nrf1α−/−, Nrf2−/−ΔTA, and caNrf2ΔN) are employed to determine differential yet integral roles of Nrf1 and Nrf2 in mediating antioxidant responsive genes to tert-butylhydroquinone (tBHQ) serving as a pro-oxidative stressor. In Nrf1α−/− cells, Nrf2 was highly accumulated but also could not fully compensate specific loss of Nrf1α’s function in its basal cytoprotective response against endogenous oxidative stress, though it exerted partially inducible antioxidant response, as the hormetic effect of tBHQ, against apoptotic damages. By contrast, Nrf2−/−ΔTA cells gave rise to a substantial reduction of Nrf1 in both basal and tBHQ-stimulated expression levels and hence resulted in obvious oxidative stress, but it can still be allowed to mediate a potent antioxidant response, as accompanied by a significantly decreased ratio of GSSG (oxidized glutathione) to GSH (reduced glutathione). Conversely, a remarkable increase of Nrf1 expression resulted from the constitutive active caNrf2ΔN cells, which were not manifested with oxidative stress, whether or not it was intervened with tBHQ. Such inter-regulatory effects of Nrf1 and Nrf2 on the antioxidant and detoxification genes (encoding HO-1, NQO1, GCLC, GCLM, GSR, GPX1, TALDO, MT1E, and MT2), as well on the ROS (reactive oxygen species)-scavenging activities of SOD (superoxide dismutase) and CAT (catalase), were further investigated. The collective results unraveled that Nrf1 and Nrf2 make distinctive yet cooperative contributions to finely tuning basal constitutive and/or tBHQ-inducible expression levels of antioxidant cytoprotective genes in the inter-regulatory networks. Overall, Nrf1 acts as a brake control for Nrf2’s functionality to be confined within a certain extent, whilst its transcription is regulated by Nrf2.


2020 ◽  
Vol 21 (18) ◽  
pp. 6973 ◽  
Author(s):  
Shiri Li ◽  
Natsuki Eguchi ◽  
Hien Lau ◽  
Hirohito Ichii

Obesity, a metabolic disorder characterized by excessive accumulation of adipose tissue, has globally become an increasingly prevalent disease. Extensive studies have been conducted to elucidate the underlying mechanism of the development of obesity. In particular, the close association of inflammation and oxidative stress with obesity has become increasingly evident. Obesity has been shown to exhibit augmented levels of circulating proinflammatory cytokines, which have been associated with the activation of pathways linked with inflammation-induced insulin resistance, a major pathological component of obesity and several other metabolic disorders. Oxidative stress, in addition to its role in stimulating adipose differentiation, which directly triggers obesity, is considered to feed into this pathway, further aggravating insulin resistance. Nuclear factor E2 related factor 2 (Nrf2) is a basic leucine zipper transcription factor that is activated in response to inflammation and oxidative stress, and responds by increasing antioxidant transcription levels. Therefore, Nrf2 has emerged as a critical new target for combating insulin resistance and subsequently, obesity. However, the effects of Nrf2 on insulin resistance and obesity are controversial. This review focuses on the current state of research on the interplay of inflammation and oxidative stress in obesity, the role of the Nrf2 pathway in obesity and insulin resistance, and the potential use of Nrf2 activators for the treatment of insulin resistance.


2013 ◽  
Vol 4 (11) ◽  
pp. e921-e921 ◽  
Author(s):  
S Tanigawa ◽  
C H Lee ◽  
C S Lin ◽  
C C Ku ◽  
H Hasegawa ◽  
...  

Abstract Oxidative stress and reactive oxygen species (ROS) are associated with diseases such as cancer, cardiovascular complications, inflammation and neurodegeneration. Cellular defense systems must work constantly to control ROS levels and to prevent their accumulation. We report here that the Jun dimerization protein 2 (JDP2) has a critical role as a cofactor for transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and small Maf protein family K (MafK) in the regulation of the antioxidant-responsive element (ARE) and production of ROS. Chromatin immunoprecipitation–quantitative PCR (qPCR), electrophoresis mobility shift and ARE-driven reporter assays were carried out to examine the role of JDP2 in ROS production. JDP2 bound directly to the ARE core sequence, associated with Nrf2 and MafK (Nrf2–MafK) via basic leucine zipper domains, and increased DNA-binding activity of the Nrf2–MafK complex to the ARE and the transcription of ARE-dependent genes. In mouse embryonic fibroblasts from Jdp2-knockout (Jdp2 KO) mice, the coordinate transcriptional activation of several ARE-containing genes and the ability of Nrf2 to activate expression of target genes were impaired. Moreover, intracellular accumulation of ROS and increased thickness of the epidermis were detected in Jdp2 KO mice in response to oxidative stress-inducing reagents. These data suggest that JDP2 is required to protect against intracellular oxidation, ROS activation and DNA oxidation. qPCR demonstrated that several Nrf2 target genes such as heme oxygenase-1, glutamate–cysteine ligase catalytic and modifier subunits, the notch receptor ligand jagged 1 and NAD(P)H dehydrogenase quinone 1 are also dependent on JDP2 for full expression. Taken together, these results suggest that JDP2 is an integral component of the Nrf2–MafK complex and that it modulates antioxidant and detoxification programs by acting via the ARE.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hyun-Ae Seo ◽  
In-Kyu Lee

Metabolic diseases, such as type 2 diabetes and obesity, are increasing globally, and much work has been performed to elucidate the regulatory mechanisms of these diseases. Nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper transcription factor that serves as a primary cellular defense against the cytotoxic effects of oxidative stress. Recent studies have proposed a close relationship between oxidative stress and energy metabolism-associated disease. The Nrf2 pathway, as a master regulator of cellular defense against oxidative stress, has emerged as a critical target of energy metabolism; however, its effects are controversial. This review examines the current state of research on the role of Nrf2 on energy metabolism, specifically with respect to its participation in adipocyte differentiation, obesity, and insulin resistance, and discusses the possibility of using Nrf2 as a therapeutic target in the clinic.


2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Xuewei Liu ◽  
Zhongbao Song ◽  
Juan Bai ◽  
Hans Nauwynck ◽  
Yongxiang Zhao ◽  
...  

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen that causes significant economic losses in the global swine industry. Commercial vaccines provide limited protection against this virus, and no highly effective therapeutic drugs are yet available. In this study, we first screened a library of 386 natural products and found that xanthohumol (Xn), a prenylated flavonoid found in hops, displayed high anti-PRRSV activity by inhibiting PRRSV adsorption onto and internalization into cells. Transcriptome sequencing revealed that Xn treatment stimulates genes associated with the antioxidant response in the nuclear factor-erythroid 2-related factor 2 (Nrf2) signalling pathway. Xn causes increased expression of Nrf2, HMOX1, GCLC, GCLM, and NQO1 in Marc-145 cells. The action of Xn against PRRSV proliferation depends on Nrf2 in Marc-145 cells and porcine alveolar macrophages (PAMs). This finding suggests that Xn significantly inhibits PRRSV proliferation and decreases viral-induced oxidative stress by activating the Nrf2–HMOX1 pathway. This information should be helpful for developing a novel prophylactic and therapeutic strategy against PRRSV infection.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Susanne Petri ◽  
Sonja Körner ◽  
Mahmoud Kiaei

Nrf2 (nuclear erythroid 2-related factor 2) is a basic region leucine-zipper transcription factor which binds to the antioxidant response element (ARE) and thereby regulates the expression of a large battery of genes involved in the cellular antioxidant and anti-inflammatory defence as well as mitochondrial protection. As oxidative stress, inflammation and mitochondrial dysfunctions have been identified as important pathomechanisms in amyotrophic lateral sclerosis (ALS), this signaling cascade has gained interest both with respect to ALS pathogenesis and therapy. Nrf2 and Keap1 expressions are reduced in motor neurons in postmortem ALS tissue. Nrf2-activating compounds have shown therapeutic efficacy in the ALS mouse model and other neurodegenerative disease models. Alterations in Nrf2 and Keap1 expression and dysregulation of the Nrf2/ARE signalling program could contribute to the chronic motor neuron degeneration in ALS and other neurodegenerative diseases. Therefore, Nrf2 emerges as a key neuroprotective molecule in neurodegenerative diseases. Our recent studies strongly support that the Nrf2/ARE signalling pathway is an important mediator of neuroprotection and therefore represents a promising target for development of novel therapies against ALS, Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s disease (AD).


Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 236-245
Author(s):  
Xiao-Jun Fu ◽  
Shuang-Yan Hu

Background: Systemic oxidative stress has been reported to play a central role in the pathogenesis of kidney function decline. The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is one of the important endogenous antioxidant stress pathways in cells. This study aims to investigate whether shenduning granule can ameliorate oxidative stress in kidney tissues by activating the Nrf2/ARE pathway, and explores the detailed underlying mechanism. Methods: A total of 120 male Sprague-Dawley rats were randomly assigned to the sham-operated and operation groups. Rats in the operation group underwent 5/6 nephrectomy. Two weeks later, rats in the operation group were further randomly divided into 5 groups: model group, low-dose, medium-dose and high-dose shenduning granule groups, and losartan group. Rats in each group were given the same volume of corresponding liquid orally. Serum creatinine (SCr), blood urea nitrogen (BUN), 24-h urinary protein, malondialdehyde (MDA) and superoxide dismutase (SOD), Nrf2, heme oxygenase-1 (HO-1), and γ-glutamyl-cysteine synthetase (γ-GCS) were determined. Results: Shenduning granule could markedly elevate HO-1, NRF2, γ-GCS and SOD (p < 0.05), and significantly decreased MDA, 24-h urinary protein, SCr and BUN in rats (p < 0.05). Conclusion: Shenduning granule can improve renal antioxidative stress activity in rats, exhibiting a renoprotective effect. The potential mechanism is likely exerted by the activation of the Nrf2/ARE pathway.


Author(s):  
Li Huo ◽  
Yu Su ◽  
Gaoyang Xu ◽  
Lingling Zhai ◽  
Jian Zhao

(1) Background: In recent decades, the prevalence of obesity has grown rapidly worldwide, thus causing many diseases, including male hypogonadism. Sulforaphane (SFN), an isothiocyanate compound, has been reported to protect the reproductive system. This research investigated the protective effect of SFN against obesity-induced impairment in the male reproductive system and explored the potential mechanism involved in mice. (2) Methods: One hundred thirty mice were divided into 5 groups (Control, DIO (diet-induced obesity), DIO + SFN 5 mg/kg, DIO + SFN 10 mg/kg, and DIO + SFN 20 mg/kg). The effects of SFN on the male reproductive system were determined based on the sperm count and motility, relative testes and epididymis weights, hormone levels, and pathological analyses. Oxidative stress was determined by measuring malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), H2O2, catalase (CAT), and glutathione peroxidase (GSH-PX) levels. Protein expression of nuclear factor erythroid-2 related factor 2 (Nrf2), Kelch-like ECH-associated protein-1 (Keap1), Microtubule-associated protein light chain 3 (LC3), Beclin1, and P62 were determined by western blotting. (3) Results: High-fat diet (HFD)-induced obesity significantly decreased relative testes and epididymis weights, sperm count and motility, and testosterone levels but increased leptin and estradiol levels. SFN supplementation ameliorated these effects. Additionally, SFN administration inhibited the obesity-induced MDA accumulation and increased the SOD level. Western blot indicated that SFN had an important role in the downregulation of Keap1. Moreover, SFN treatment attenuated obesity-induced autophagy, as detected by LC3 and Beclin1. (4) Conclusions: SFN ameliorated the reproductive toxicity associated with obesity by inhibiting oxidative stress mediated by the nuclear factor erythroid-2 related factor 2/ antioxidant response element (Nrf2/ARE) signaling pathway and recovery of normal autophagy.


2005 ◽  
Vol 19 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Benoı̂t Chénais ◽  
Anna Derjuga ◽  
Wael Massrieh ◽  
Kristy Red-Horse ◽  
Valerie Bellingard ◽  
...  

Abstract Members of the Maf protooncogene and cap’n’ collar families of basic-leucine zipper transcription factors play important roles in development, differentiation, oncogenesis, and stress signaling. In this study, we performed an in vivo protein-protein interaction screen to search for novel partners of the small Maf proteins. Using full-length human MAFG protein as bait, we identified the human basic-leucine zipper protein NRF3 [NF-E2 (nuclear factor erythroid 2)-related factor 3] as an interaction partner. Transfection studies confirmed that NRF3 is able to dimerize with MAFG. The resulting NRF3/MAFG heterodimer recognizes nuclear factor-erythroid 2/Maf recognition element-type DNA-binding motifs. Functional analysis revealed the presence of a strong transcriptional activation domain in the center region of the NRF3 protein. We found that NRF3 transcripts are present in placental chorionic villi from at least week 12 of gestation on through term. In particular, NRF3 is highly expressed in primary placental cytotrophoblasts, but not in placental fibroblasts. The human choriocarcinoma cell lines BeWo and JAR, derived from trophoblastic tumors of the placenta, also strongly express NRF3 transcripts. We generated a NRF3-specific antiserum and identified NRF3 protein in placental choriocarcinoma cells. Furthermore, we showed that NRF3 transcript and protein levels are induced by TNF-α in JAR cells. Our functional studies suggest that human NRF3 is a potent transcriptional activator. Finally, our expression and induction analyses hint at a possible role of Nrf3 in placental gene expression and development.


Sign in / Sign up

Export Citation Format

Share Document