scholarly journals THE POLYMORPHISM OF THE POPULATION OF THE UKRAINIAN RIVER BUFFALO AT MICROSATELLITE DNA LOCI

2018 ◽  
Vol 51 ◽  
pp. 276-283 ◽  
Author(s):  
Yu. V. Guseev ◽  
О. V. Мelnyk ◽  
E. A. Gladyr ◽  
N. A. Zinovieva

According to the zoological classification Asian water buffaloes (Bubalus bubalis) are divided into two subspecies i.e. river buffalo and swamp buffalo. The river buffalo is bred in Ukraine. The water buffalo is a kind of farm animals, which has been used by the mankind as draft-cattle and for obtaining milk and meat for food since ancient times. Buffaloes have adapted to living in countries with hot humid climate, they are bred around the world, from tropical to temperate regions and even in highland areas. In many Asian countries they are used as financial guarantors for loans and as a financial asset that can be sold if necessary. The breeding of water buffaloes of Asian origin in livestock production does not compete with mankind in the food chain, because these farm animals are undemanding to fodder; they efficiently convert poor quality fodder, such as reed, sedge, shrub vegetation, straw of rice, of rye, of triticale, and of flax etc., and waste products of food and sugar industries caused by processing in foods with high biological value and production of biofertilizers for improving soil fertility and structure. Buffaloes are resistant to pyroplasmosis, anaplasmosis, tuberculosis, brucellosis, hoofed rot, diseases of the reproductive system and other diseases distributed within the species Bos Taurus taurus. Nowadays there are more than 182 million head of the buffalo in the world. Most of their population is concentrated in Asia and is 96.99% (174 mil. head) of the world number; the number in Egypt is 2.24% (3.7 mil. head), in America – 0.64% (4.3 mil. head) and in Europe – 0.15% (459 tsd. head). In Australia, the swamp buffalo is mainly bred, its number is from 70 tsd. to 200 tsd. head. Regardless of the geographical location of countries the buffalo population is intensively increasing in all the continents. During the period of 1961 – 2007 the number of buffalo increased by 54.05% or 85.84 mil. head in Asia, by 37.69% (2.48 mil. head) in Africa, by 6.14% (1.07 mil. head) in America. In Europe, the number of buffalo has declined from 0.73 to 0.25 mil. head or by 270.37%. Unfortunately, the trend of growth of the species Bubalus bubalis in North America and Europe is not observed, the main reason for that is still excessive enthusiasm to the breeding of Holstein cattle. The number of buffaloes in these two continents is less than 1% of the global number of the buffaloes, but thanks to the Italian breeders the reduction of the buffalo population in Europe could be stopped. Developed European countries, the USA, Canada, Israel etc. are gradually increasing buffalo herd and forming a new branch of cattle husbandry i.e. buffalo-breeding. In Ukraine, the number of buffaloes is not significant, but on the total amount of derived milk it is not inferior to the "supermilk" Holstein breed. Milk and meat derived from buffalo may be the basic foundation of organic products for the Ukrainian population. Therefore, the study of genetic diversity of buffaloes is particularly important. One way to study it is to use molecular genetic markers, including sequences of DNA polymorphism of which is caused by differences in the nucleotide sequences of different alleles at one locus. One of these types of genetic markers is microsatellite loci of the DNA. In recent years genetic characteristics of buffaloes with using microsatellites has acquired special distribution. This is confirmed by numerous studies of foreign authors. Despite a number of existing microsatellite loci used for research, genetic analysis with using buffalo microsatellite loci for cattle is very efficient. This paper presents the results of studies of genetic diversity of domestic buffalo population (Bubalus bubalis), the number of which decreased significantly in the recent decades in Ukraine. The material for these studies was 64 buffalo head, which are bred in «Golosеevo» farm, Kyiv region, and private households of residents of the Transcarpathian region. Genomic DNA was isolated from cartilage tissues from ears. Genetic analysis was performed using 11 microsatellite loci (BM1818, BM2113, BM1824, INRA023, ILST006, ETH10, ETH185, ETH225, SPS115, TGLA126, TGLA227), which are recommended by ISAG for genotyping of cattle. The results of studies showed that the average number of alleles per locus was 6.55. The value of observed heterozygosity ranged from 0.260 to 0.980, expected one ranged from 0.291 (BM2113) to 0.753 (TGLA227). All microsatellite loci except BM1818, ETH185 and BM2113 showed high level of polymorphism. The most polymorphic locus was TGLA227. Despite the limited number of buffaloes, in the studied population an excess of heterozygous genotypes at the level of 5.5% was established. It indicates the existence of high genetic variability of population. For TGLA126 was determined the largest excess of heterozygous genotypes – 34.2%, while for BM1818 was fixed maximum deficit of heterozygotes – 27.3%. Despite the use of microsatellite loci, which are recommended for cattle genotyping, the efficiency of their use for genetic analysis of buffaloes was very high (more than 99.99%). It indicates the ability and efficiency of use of selected microsatellite loci for allele pool evaluation and genetic diversity characterization of Ukrainian buffalo population.

Genome ◽  
1989 ◽  
Vol 32 (6) ◽  
pp. 999-1002 ◽  
Author(s):  
M. Harisah ◽  
T. I. Azmi ◽  
M. Hilmi ◽  
M. K. Vidyadaran ◽  
T. A. Bongso ◽  
...  

Chromosome analysis on different breed types of water buffaloes (Bubalus bubalis) was undertaken to identify their karyotypes and to determine the pattern of chromosome segregation in crossbred water buffaloes. Altogether, 75 purebred and 198 crossbred buffaloes including 118 from Malaysia and 80 from the Philippines, were analyzed in this study. The diploid chromosome number of the swamp buffalo from both countries was 48 and.that of the river buffalo was 50, while all F1 hybrids exhibited 49 chromosomes. The F2 hybrids consisted of three different karyotype categories (2n = 48, 2n = 49, and 2n = 50), whereas the backcrosses included two different karyotype categories each, with 2n = 48 and 2n = 49 in the three quarters swamp types and 2n = 49 and 2n = 50 in the three quarters river types. Chi-square tests on pooled data from Malaysia and the Philippines indicated that the distribution of different karyotype categories of F2 animals did not deviate significantly from the 1:2:1 ratio expected if only balanced gametes with 24 and 25 chromosomes were produced by the F1 hybrids. In the three quarters swamp and three quarters river types, the respective karyotypic categories were in ratios approximating 1:1. The distribution of chromosome categories among the F2 hybrids and backcrosses suggests that only genetically balanced gametes of the F1 hybrids are capable of producing viable F2 and backcross generations.Key words: buffaloes, chromosome segregation, genotype, buffalo hybrids.


2020 ◽  
Vol 7 ◽  
Author(s):  
Antonio Humberto Hamad Minervino ◽  
Marco Zava ◽  
Domenico Vecchio ◽  
Antonio Borghese

The domestic buffalo (Bubalus bubalis), also known as water buffalo or Asian buffalo to prevent confusion with the American bison (Bison bison), wrongly named buffalo in North America, comprises two subspecies: the river buffalo (B. bubalis bubalis) and the swamp buffalo (B. bubalis kerebau). The swamp buffalo has a consistent phenotype and is considered as one type, even if many breeds are recognized within it; conversely, the river buffalo subspecies has many breeds. We found limited information available regarding the worldwide distribution of buffaloes. The best estimate is that 208,098,759 buffalo head are distributed in 77 countries in five continents. In this review, we presented the basic aspects of the water buffalo and unraveled the buffalo path followed from the origin of the species to its current global distribution. We reviewed several data sources to provide a better estimate of the world buffalo count and distribution.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3109
Author(s):  
Alessandra Iannuzzi ◽  
Pietro Parma ◽  
Leopoldo Iannuzzi

The water buffalo (Bubalus bubalis), also known as the Asian buffalo, is an essential domestic bovid. Indeed, although its world population (~209 million heads) is approximately one-ninth that of cattle, the management of this species involves a larger human population than that involved with raising cattle. Compared with cattle, water buffalo have been understudied for many years, but interest in this species has been increasing, especially considering that the world population of these bovids grows every year—particularly that of the river buffalo. There are two genera of buffalo worldwide: the Syncerus (from the African continent), and the Bubalus (from the southwest Asian continent, Mediterranean area, southern America, and Australia). All species belonging to these two genera have specific chromosome numbers and shapes. Because of such features, the study of chromosomes is a fascinating biological basis for differentiating various species (and hybrids) of buffaloes and characterizing their karyotypes in evolutionary, clinical, and molecular studies. In this review, we report an update on essential cytogenetic studies in which various buffalo species were described from evolutionary, clinical, and molecular perspectives—particularly considering the river buffalo (Bubalus bubalis 2n = 50). In addition, we show new data on swamp buffalo chromosomes.


1976 ◽  
Vol 18 (1) ◽  
pp. 101-104 ◽  
Author(s):  
G. L. Toll ◽  
C. R. E. Halnan

The karyotype of the Asian Swamp buffalo has previously been reported for beasts of Thailand and Malaysia. A diploid number of 48 was observed which was different to that found for the River buffalo (2n = 50). This report describes the karyotype of Australian Swamp buffalo, which has proved in agreement with that of the Asian Swamp buffalo. An hypothesis is advanced to account for movement of buffalo down the island chain from Malaya to Australia.


2017 ◽  
Vol 11 (2) ◽  
pp. 91 ◽  
Author(s):  
Rusfidra Rusfidra ◽  
Y. Heryandi ◽  
Jamsari Jamsari ◽  
E. Y. Rahman

West Sumatera Province has poultry genetic resource of local duck that potential in supply<br />eggs and duck meat. Bayang duck was set by Indonesian Agricultural Ministry in 2012 as national livestock breeds in Indonesia. Microsatellite markers are widely used as a genetic identifier because of their abundant existence, co-dominant and high polymorphic. The purpose of this study was to determine the genetic diversity of Bayang ducks based on two microsatellite loci which include AY287 and AY283. DNA substances used in the study were blood samples from 24 Bayang duck in Pesisir Selatan Regency. The isolated DNA genom from 24 blood samples of Bayang duck could be detected by gel electrophoresis. Results showed that AY287 locus has 6 alleles; allele A (108 bp), allele B (142 bp), allele C (183 bp), allele D (227 bp), allele E (272 bp) and allele F (340 bp). Both allele E and F were specific genetic markers of Bayang duck. Alleles frequencies of the AY287 locus were as follow: allele C (26,93%), allele D (19,24%), allele A (15,38%), allele B (15,38%), allele E (15,38%) and allele F (7,69%). The AY283 locus has 6 alleles consisted of allele A (230 bp), allele B (320 bp), allele C (345 bp), allele D (390 bp), allele E (450 bp) and allele F (500 bp). Allele frequencies of this marker were allele B (20,51%), allele D (20,51%), allele E (20,51%), allele A (15,39%), allele C (15,39%), and allele F (7,69%), respectively. Our finding suggest that two microsatellite markers, AY287 and AY283, were polymorphic in Bayang duck population.<br />Key words: Bayang duck, microsatellite, AY283, AY287


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Nicolo P. P. Macciotta ◽  
Licia Colli ◽  
Alberto Cesarani ◽  
Paolo Ajmone-Marsan ◽  
Wai Y. Low ◽  
...  

Abstract Background Water buffalo is one of the most important livestock species in the world. Two types of water buffalo exist: river buffalo (Bubalus bubalis bubalis) and swamp buffalo (Bubalus bubalis carabanensis). The buffalo genome has been recently sequenced, and thus a new 90 K single nucleotide polymorphism (SNP) bead chip has been developed. In this study, we investigated the genomic population structure and the level of inbreeding of 185 river and 153 swamp buffaloes using runs of homozygosity (ROH). Analyses were carried out jointly and separately for the two buffalo types. Results The SNP bead chip detected in swamp about one-third of the SNPs identified in the river type. In total, 18,116 ROH were detected in the combined data set (17,784 SNPs), and 16,251 of these were unique. ROH were present in both buffalo types mostly detected (~ 59%) in swamp buffalo. The number of ROH per animal was larger and genomic inbreeding was higher in swamp than river buffalo. In the separated datasets (46,891 and 17,690 SNPs for river and swamp type, respectively), 19,760 and 10,581 ROH were found in river and swamp, respectively. The genes that map to the ROH islands are associated with the adaptation to the environment, fitness traits and reproduction. Conclusions Analysis of ROH features in the genome of the two water buffalo types allowed their genomic characterization and highlighted differences between buffalo types and between breeds. A large ROH island on chromosome 2 was shared between river and swamp buffaloes and contained genes that are involved in environmental adaptation and reproduction.


2001 ◽  
Vol 3 (2) ◽  
pp. 17 ◽  
Author(s):  
Fernando Moreno O. ◽  
James N. Derr ◽  
Nelson Bermúdez G. ◽  
Jorge Ossa L. ◽  
Luzardo Estrada L ◽  
...  

<p>La caracterización genética del ganado criollo colombiano (gcc) ha demostrado el valor de estas razas en los sistemas productivos tropicales, lo que ha despertado el interés para desarrollar programas de conservación y multiplicación. Se adelantó un estudio de análisis genético con las siete razas de ganado criollo colombiano, (rgcc): Blanco Orejinegro (BON), Romosinuano (R), Costeño Con Cuernos (CCC), Sanmartinero (SM), Chino Santandereano (Ch), Hartón del Valle (H) y Casanareño (Ca), utilizando el Cebú (C) como control, con el objeto de evaluar su diversidad genética y relaciones filogenéticas. Se usaron 7 microsatélites (STR) para establecer las distancias genéticas amplificadas mediante PCR. El tamaño de los loci se definió mediante marcaje con ɣ<sup>32</sup> P seguido de un pase en geles de poliacrilamida (PAGE) o marcados con fluorescencia y electroforesis capilar. Los datos se analizaron usando los programas Genepop, GDA y Phylip. El número promedio de alelos por locus fue de 8,9 y Ia heterocigosidad promedia observada fue de o,52. El árbol filogenético construido con el programa Phylip, empleando la distancia de Nei y el algoritmo de Neighbour-joining, agrupó en dos las gcc. En el grupo uno las razas: BON, SM, R, CCC y H; y en el grupo dos las razas: Ch, Ca y C. Los resultados de evaluación filogenética de las gcc indicaron que existe diversidad genética adecuada en estas razas para programas de mejoramiento genético; sin embargo, se recomienda continuar el estudio con un mayor número de marcadores genéticos.</p><p><strong><br /></strong></p><p><strong>Diversity and Phylogenetic Relations of Colombian Criollo Cattle.</strong></p><p>Studies of genetic characterisation of Colombian criollo cattle (gcc) has shown the value of these breeds in tropical production systems; consequently attention is noticeably growing to develop conservation and multiplication programs. A genetic analysis study was conducted including the seven criollo cattle breeds: Blanco Orejinegro (BON), Romosinuano (R), Costeño Con Cuernos (CCC), Sanmartinero (SM), Chino Santandereano (Ch), Hartón del Valle (H) and Casanareño (C), using Cebu as external control breed, with the purpose to evaluate genetic diversity and philogenetic relations. Seven microsatellite (STR) were used to detect length variations amplified by the PCR and sized by means of ɣ<sup>32</sup> P, runned in PAGE or tagged with a fluorescent dye and electrophoresis. Data were analysed using Genepop, GDA and Phylip programs. Mean number of alleles by loci were 8.9 and mean heterozygocity was o.52. The phylogenetic tree developed using Phylip program, the Nei's distance and the neighbour-joining aglorithm grouped in two the gcc. Group one included: Bon, SM, R,CCC and H, and the second group included Ch, Ca, C. Results of the phylogenetic relations of gcc showed that these breeds have adequate genetic diversity for breeding Programs; however we suggest to carry out studies including higher number of genetic markers.</p>


2017 ◽  
Vol 37 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Melina G.S. Sousa ◽  
Felipe M. Salvarani ◽  
Henrique A. Bomjardim ◽  
Marilene F. Brito ◽  
José D. Barbosa

ABSTRACT: The domestication of water buffaloes (Bubalus bubalis) originated in India and China and spread throughout the world and represents an important source of food of high biological value. Given the importance and relevance of brucellosis for buffalo production, this article reviews the history, etiopathogenesis, epidemiology, clinical signs, anatomopathological findings, diagnosis and control of the disease, focusing on data from studies on water buffaloes performed in different countries and the Brazilian Amazon biome.


GigaScience ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Ting Sun ◽  
Jiafei Shen ◽  
Alessandro Achilli ◽  
Ningbo Chen ◽  
Qiuming Chen ◽  
...  

Abstract Background The domestic buffalo (Bubalus bubalis) is an essential farm animal in tropical and subtropical regions, whose genomic diversity is yet to be fully discovered. Results In this study, we describe the demographic events and selective pressures of buffalo by analyzing 121 whole genomes (98 newly reported) from 25 swamp and river buffalo breeds. Both uniparental and biparental markers were investigated to provide the final scenario. The ancestors of swamp and river buffalo diverged ∼0.23 million years ago and then experienced independent demographic histories. They were domesticated in different regions, the swamp buffalo at the border between southwest China and southeast Asia, while the river buffalo in south Asia. The domestic stocks migrated to other regions and further differentiated, as testified by (at least) 2 ancestral components identified in each subspecies. Different signals of selective pressures were also detected in these 2 types of buffalo. The swamp buffalo, historically used as a draft animal, shows selection signatures in genes associated with the nervous system, while in river dairy breeds, genes under selection are related to heat stress and immunity. Conclusions Our findings substantially expand the catalogue of genetic variants in buffalo and reveal new insights into the evolutionary history and distinct selective pressures in river and swamp buffalo.


2016 ◽  
Vol 52 ◽  
pp. 166-171
Author(s):  
V. V. Dzitsiuk ◽  
S. G. Kruhlyk ◽  
V. G. Spyrydonov

Modern methods of breeding dogs are based on getting of stable phenotypic uniformity by using close inbreeding or breeding by one line, but such strategy leads to a loss of genetic diversity, and as a result there are genetic defects in breeds which have no external manifestations or manifest in adulthood of dogs and are transmitted from generation to generation. Therefore, to prevent use of dogs with genetic abnormalities in breeding, and to develop standards for a breed and make an accurate pedigree, must carry out the genetic evaluation of animals. One of the modern tools for dogs’ genetic evaluation is DNA-testing using microsatellite loci permitting to match the parental couple effectively, identify (to certify) animals, undertake a comprehensive assessment for heterozygous and homozygous genotypes in populations, permitted for use in the selection process, and illustrate clearly the impact of artificial selection on the genetic characteristics of breeds. The study was conducted in Ukrainian Laboratory of Quality and Safety of Agricultural Products in Department of Molecular Biology Research. For the genetic analysis 42 German Shepherd dogs, used for breeding in kennels of Ukrainian Kennel Union (UKU), were selected. The material for the research was DNA isolated from dogs’ buccal epithelium cells and blood. Genomic DNA was extracted using a standard set of reagents for DNA isolation. Level of theoretically expected heterozygosity (Hexp) varied between 0.385 (PEZ1) to 0.835 (PEZ8). On average theoretically expected heterozygosity with coefficient of 0.657 had not significant advantage over value of actual heterozygosity (0.629), it also shows that the status of the sample of dogs is close to balance. The same is observed in actual and expected heterozygosity for PEZ 6 (0.629) and PEZ 8 (0.657) loci, which also shows the balance. For FHC2010 loci actual heterozygosity is higher than expected, indicating increasing the number of heterozygous individuals. For FHC2054 locus, by contrast, theoretically expected heterozygosity (0.670) dominates the actual (0.429), indicating the lack of heterozygous genotypes in this micropopulation. The value of PIC (polymorphism information content) of the analysed loci ranged from 0.325 to 0.740 with average value 0.574. PEZ6, PEZ8, FHC 2010 and FHC 2054 loci optimally meets their suitability for genetic certification of genotypes because their frequency varies from 0.587 to 0.740. The reduced average index of polymorphism for PEZ1 locus with coefficient of 0.325 confirmed the insufficient level of its polymorphism for full genetic evaluation of the micropopulation of German Shepherd dogs (PIC < 0.500), as confirmed by Chinese researcher J.-H. Ye, according to his data PIC value for PEZ1 locus was 0,320, which correlates with our results. And PIC value for PEZ8 locus was 0.740 in our studies, whereas according to J.-H. Ye – 0,720, which, by contrast, indicates high polymorphism and confirms the effectiveness of its use in genotyping of dogs. Probability of exclusion of accidental allele coincidence (PE), which is 0.675 on average, indicates a lack of the number and informativeness of the selected microsatellite markers for German Shepherd as in this case a combined probability (CPE) of accidental allele coincidence is 0.933886 or 93.3%. The chosen microsatellite loci to study the genetic structure of the German Shepherd dog population, show a sufficiently high informativeness of chosen system of molecular genetic DNA markers. However, there is the need for using additional microsatellite markers which will increase the combined probability of accidental allele coincidence (CPE) from 93.3% to 99.9%. The analysis of heterozygosity is important in studying the dynamics of genetic processes in populations, because heterozygosity has an effect on many factors, including mutations, selection, non-random mating, genetic drift, etc., so continuous monitoring of genetic diversity is required for their timely identification and development of measures to improve breeding work on biodiversity in different dog breeds.


Sign in / Sign up

Export Citation Format

Share Document