scholarly journals A histone modification identifies a DNA element controllingsloBK channel gene expression in muscle

2015 ◽  
Vol 29 (2-3) ◽  
pp. 124-134 ◽  
Author(s):  
Xiaolei Li ◽  
Alfredo Ghezzi ◽  
Harish R. Krishnan ◽  
Jascha B. Pohl ◽  
Arun Y. Bohm ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhang-Wei Liu ◽  
Nan Zhao ◽  
Yin-Na Su ◽  
Shan-Shan Chen ◽  
Xin-Jian He

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86569 ◽  
Author(s):  
Jae-Hong Ko ◽  
Wanjun Gu ◽  
Inja Lim ◽  
Hyoweon Bang ◽  
Eun A. Ko ◽  
...  

1997 ◽  
Vol 504 (2) ◽  
pp. 271-286 ◽  
Author(s):  
A. D. Wickenden ◽  
R. Kaprielian ◽  
T. G. Parker ◽  
O. T. Jones ◽  
P. H. Backx

2006 ◽  
Vol 128 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Patricia Ortega-Sáenz ◽  
Alberto Pascual ◽  
Raquel Gómez-Díaz ◽  
José López-Barneo

Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K+ channels and has been proposed to be the acute O2 sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O2 sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K+ channel α-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K+ channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O2-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K+ channel gene expression but it does not alter the intrinsic O2 sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O2 sensor.


2004 ◽  
Vol 562 (1) ◽  
pp. 223-234 ◽  
Author(s):  
Céline Marionneau ◽  
Brigitte Couette ◽  
Jie Liu ◽  
Huiyu Li ◽  
Matteo E. Mangoni ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Cynthia C. Jose ◽  
Zhenjia Wang ◽  
Vinay Singh Tanwar ◽  
Xiaoru Zhang ◽  
Chongzhi Zang ◽  
...  

Abstract Background Nickel is an occupational and environmental toxicant associated with a number of diseases in humans including pulmonary fibrosis, bronchitis and lung and nasal cancers. Our earlier studies showed that the nickel-exposure-induced genome-wide transcriptional changes, which persist even after the termination of exposure may underlie nickel pathogenesis. However, the mechanisms that drive nickel-induced persistent changes to the transcriptome remain elusive. Results To elucidate the mechanisms that underlie nickel-induced long-term transcriptional changes, in this study, we examined the transcriptome and the epigenome of human lung epithelial cells during nickel exposure and after the termination of exposure. We identified two categories of persistently differentially expressed genes: (i) the genes that were differentially expressed during nickel exposure; and (ii) the genes that were differentially expressed only after the termination of exposure. Interestingly, > 85% of the nickel-induced gene expression changes occurred only after the termination of exposure. We also found extensive genome-wide alterations to the activating histone modification, H3K4me3, after the termination of nickel exposure, which coincided with the post-exposure gene expression changes. In addition, we found significant post-exposure alterations to the repressive histone modification, H3K27me3. Conclusion Our results suggest that while modest first wave of transcriptional changes occurred during nickel exposure, extensive transcriptional changes occurred during a second wave of transcription for which removal of nickel ions was essential. By uncovering a new category of transcriptional and epigenetic changes, which occur only after the termination of exposure, this study provides a novel understanding of the long-term deleterious consequences of nickel exposure on human health.


2000 ◽  
Vol 279 (5) ◽  
pp. L857-L862 ◽  
Author(s):  
David N. Cornfield ◽  
Ernesto R. Resnik ◽  
Jean M. Herron ◽  
Steven H. Abman

Calcium-sensitive potassium (KCa) channels play a critical role in mediating perinatal pulmonary vasodilation. Because infants with persistent pulmonary hypertension of the newborn (PPHN) have blunted vasodilator responses to birth-related stimuli, we hypothesized that lung KCachannel gene expression is decreased in PPHN. To test this hypothesis, we measured KCa channel gene expression in distal lung homogenates from both fetal lambs with severe pulmonary hypertension caused by prolonged compression of the ductus arteriosus and age-matched, sham-operated animals (controls). After at least 9 days of compression of the ductus arteriosus, fetal lambs were killed. To determine lung KCa channel mRNA levels, primers were designed against the known sequence of the KCa channel and used in semiquantitative RT-PCR, with lung 18S rRNA content as an internal control. Compared to that in control lambs, lung KCa channel mRNA content in the PPHN group was reduced by 26 ± 6% ( P < 0.02), whereas lung voltage-gated K+ 2.1 mRNA content was unchanged. We conclude that lung KCa channel mRNA expression is decreased in an ovine model of PPHN. Decreased KCa channel gene expression may contribute to the abnormal pulmonary vascular reactivity associated with PPHN.


Sign in / Sign up

Export Citation Format

Share Document