Type I Collagen Accelerates the Spreading of Lens Epithelial Cells through the Expression and Activation of Matrix Metalloproteinases

2014 ◽  
Vol 39 (5) ◽  
pp. 460-471 ◽  
Author(s):  
Arata Shimada ◽  
Yoshiki Miyata ◽  
Hiroshi Kosano
2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Senthilkumar Muthusamy ◽  
Asha V Nath ◽  
Shilpa Ajit ◽  
Anil K PR

Introduction: Use of cardiac mesenchymal cells (CMCs) has been shown to improve cardiac function following myocardial infarction. Main drawback in cardiac cell therapy is the major loss of injected cells within few hours. Increase the retention of these injected cells could increase their efficacy, where cardiac patches with various cell types showed better outcome. Among, collagen patch plays lead role as a cell-laden matrix in cardiac tissue engineering. Creating a detailed understanding of how collagen matrix changes the cellular phenotype could provide seminal insights to regeneration therapy. Hypothesis: Growing CMCs in three dimensional (3D) collagen matrix could alter the expression of extracellular matrix (ECM) and adhesion molecules, which may enhance their efficacy. Methods: The bovine type I collagen was chemically modified and solubilized in culture medium with photo-initiator. The mouse CMCs were isolated and resuspended in collagen solution, printed using 3D bioprinter and UV-crosslinked to form 3D-CMC construct. The 3D-CMC construct was submerged in growth medium and cultured for 48h and analyzed for the expression of ECM and adhesion molecules (n=5/group). CMCs cultured in regular plastic tissue culture dish was used as control. Results: RT profiler array showed changes in the ECM and adhesion molecules expression, specifically certain integrins and matrix metalloproteinases (MMPs) in CMCs cultured 3D collagen construct compared to 2D monolayer. Subsequent qRT-PCR analysis revealed significant (p<0.01) upregulation of integrins such as Itga2 (2.96±0.13), Itgb1 (3.18±0.2) and Itgb3 (2.4±0.27) and MMPs such as MMP13 (37.2±3.36), MMP9 (5.23±1.06) and MMP3 (7.14±2.07). Western blot analysis further confirmed significant elevation of these integrins and matrix metalloproteinases at protein level. Collagen encapsulation did not alter the expression of N-cadherin in CMCs, which is a potential mesenchymal cadherin adhesion molecule. Conclusion: Integrin αβ heterodimers transduce signals that facilitate cell homing, migration, survival and differentiation. Similarly, MMPs plays vital role in cell migration and proliferation. Our results demonstrate that the 3D-collagen Niche enhances the expression of certain integrins and MMPs in CMCs. This suggest that the efficacy of CMCs could be magnified by providing 3D architecture with collagen matrix and further in vivo experiments would reveal functional benefits from CMCs for clinical use.


2014 ◽  
Vol 48 (4) ◽  
pp. 312-319 ◽  
Author(s):  
A.C.R. Chibinski ◽  
J.R. Gomes ◽  
K. Camargo ◽  
A. Reis ◽  
D.S. Wambier

2011 ◽  
Vol 300 (3) ◽  
pp. L391-L401 ◽  
Author(s):  
Shunsuke Minagawa ◽  
Jun Araya ◽  
Takanori Numata ◽  
Satoko Nojiri ◽  
Hiromichi Hara ◽  
...  

Reepithelialization of remodeled air spaces with bronchial epithelial cells is a prominent pathological finding in idiopathic pulmonary fibrosis (IPF) and is implicated in IPF pathogenesis. Recent studies suggest that epithelial senescence is a risk factor for development of IPF, indicating such reepithelialization may be influenced by the acceleration of cellular senescence. Among the sirtuin (SIRT) family, SIRT6, a class III histone deacetylase, has been demonstrated to antagonize senescence. We evaluated the senescence of bronchiolization in association with SIRT6 expression in IPF lung. Senescence-associated β-galactosidase staining and immunohistochemical detection of p21 were performed to evaluate cellular senescence. As a model for transforming growth factor (TGF)-β-induced senescence of abnormal reepithelialization, we used primary human bronchial epithelial cells (HBEC). The changes of SIRT6, p21, and interleukin (IL)-1β expression levels in HBEC, as well as type I collagen expression levels in fibroblasts, were evaluated. In IPF lung samples, an increase in markers of senescence and SIRT6 expression was found in the bronchial epithelial cells lining cystically remodeled air spaces. We found that TGF-β induced senescence in primary HBEC by increasing p21 expression, and, whereas TGF-β also induced SIRT6, it was not sufficient to inhibit cellular senescence. However, overexpression of SIRT6 efficiently inhibited TGF-β-induced senescence via proteasomal degradation of p21. TGF-β-induced senescent HBEC secreted increased amounts of IL-1β, which was sufficient to induce myofibroblast differentiation in fibroblasts. These findings suggest that accelerated epithelial senescence plays a role in IPF pathogenesis through perpetuating abnormal epithelial-mesenchymal interactions, which can be antagonized by SIRT6.


2017 ◽  
Vol 51 (6) ◽  
pp. 576-581 ◽  
Author(s):  
Pinar Altinci ◽  
Roda Seseogullari-Dirihan ◽  
Gulsen Can ◽  
David Pashley ◽  
Arzu Tezvergil-Mutluay

The enzymatic degradation of dentin organic matrix occurs via both the action of matrix metalloproteinases (MMPs) and cysteine cathepsins (CCs). Zinc can prevent collagen hydrolysis by MMPs. However, its effect on the activity of dentin-bound CCs is not known. The aim of this study was to investigate the effect of zinc on matrix-bound cathepsin K and MMP activity in dentin. Completely demineralized dentin beams were divided into test groups (n = 9) and incubated at 37°C in an incubation media (1 mL) containing ZnCl2 of 0.02 (physiological level, control), 0.2, 0.5, 1, 5, 10, 20, 30, or 40 mM. The dry mass changes of the beams were determined, and incubation media were analyzed for cathepsin K- and MMP-specific collagen degradation end products - CTX (C-terminal cross-linked telopeptide of type I collagen) and ICTP (cross-linked carboxy-terminal telopeptide of type I collagen) - at 1, 3, and 7 days of incubation. The mass loss of the beams decreased when the zinc level in the incubation media was ≥5 mM (p < 0.05). The release of liberated collagen degradation telopeptides decreased in accordance with the decrease in the mass loss rates of the beams. Cathepsin K-induced dentin collagen degradation can be strongly inhibited by zinc. Zinc levels of ≥5 mM can be considered as a reliable threshold for the stabilization of dentin matrices.


2013 ◽  
Vol 24 (23) ◽  
pp. 3764-3774 ◽  
Author(s):  
Hidetoshi Gon ◽  
Katsumi Fumoto ◽  
Yonson Ku ◽  
Shinji Matsumoto ◽  
Akira Kikuchi

Single epithelial-derived tumor cells have been shown to induce apical and basolateral (AB) polarity by expression of polarization-related proteins. However, physiological cues and molecular mechanisms for AB polarization of single normal epithelial cells are unclear. When intestinal epithelial cells 6 (IEC6 cells) were seeded on basement membrane proteins (Matrigel), single cells formed an F-actin cap on the upper cell surface, where apical markers accumulated, and a basolateral marker was localized to the rest of the cell surface region, in a Wnt5a signaling–dependent manner. However, these phenotypes were not induced by type I collagen. Rac1 activity in the noncap region was higher than that in the cap region, whereas Rho activity increased toward the cap region. Wnt5a signaling activated and inhibited Rac1 and RhoA, respectively, independently through Tiam1 and p190RhoGAP-A, which formed a tertiary complex with Dishevelled. Furthermore, Wnt5a signaling through Rac1 and RhoA was required for cystogenesis of IEC6 cells. These results suggest that Wnt5a promotes the AB polarization of IEC6 cells through regulation of Rac and Rho activities in a manner dependent on adhesion to specific extracellular matrix proteins.


1990 ◽  
Vol 110 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
C H Streuli ◽  
M J Bissell

Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.


1998 ◽  
Vol 274 (1) ◽  
pp. L58-L65 ◽  
Author(s):  
Xiangde Liu ◽  
Takeshi Umino ◽  
Marty Cano ◽  
Ronald Ertl ◽  
Tom Veys ◽  
...  

Fibroblasts can contract collagen gels, a process thought to be related to tissue remodeling. Because epithelial cells are also involved in repair responses, we postulated that human bronchial epithelial cells (HBECs) could cause contraction of collagen gels. To evaluate this, HBECs were plated on the top of native type I collagen gels and were incubated for 48 h. After this, the gels were released and floated in LHC-9-RPMI 1640 for varying times, and gel size was measured with an image analyzer. HBECs caused a marked contraction of the gels within 24 h; the area was reduced by 88 ± 4% ( P < 0.01). The degree of gel contraction was dependent on cell density; 12,500 cells/cm2 resulted in maximal contraction, and half-maximal contraction occurred at 7,500 cells/cm2. Contraction varied inversely with the collagen concentration (91 ± 1% with 0.5 mg/ml collagen vs. 43 ± 5% with 1.5 mg/ml collagen). In contrast to fibroblasts that contract gels most efficiently when cast into the gel, HBEC-mediated contraction was significantly ( P < 0.01) more efficient when cells were on top of the gels rather than when cast into the gels. Anti-β1-integrin antibody blocked HBEC-mediated contraction by >50%, whereas anti-α2-, anti-α3-, anti-αv-, anti-αvβ5-, anti-β2-, or anti-β4-integrin antibody was without effect. The combination of anti-β1-integrin antibody and an anti-α-subfamily antibody completely blocked gel contraction induced by HBECs. In contrast, anti-cellular fibronectin antibody did not block HBEC-induced gel contraction, whereas it did block fibroblast-mediated gel contraction. In summary, human airway epithelial cells can contract type I collagen gels, a process that appears to require integrins but may not require fibronectin. This process may contribute to airway remodeling.


Sign in / Sign up

Export Citation Format

Share Document