scholarly journals The effect of footwear mass on the gait patterns of unilateral below-knee amputees

1989 ◽  
Vol 13 (3) ◽  
pp. 140-144 ◽  
Author(s):  
J. M. Donn ◽  
D. Porter ◽  
V. C. Roberts

This study reports an investigation into the effect of shoe mass on the gait patterns of below-knee (BK) amputees. Ten established unilateral BK, patellar-tendon-bearing prosthesis wearers were assessed using a VICON system of gait analysis. Incremental masses of 50g (up to 200g) were added to the subjects' shoes and data captured as they walked along a 15m measurement field. Coefficients of symmetry of various parameters of the swing phase (knee frequency symmetry, swing time symmetry, maximum flexion to heel strike time symmetry) were measured and their correlation was tested with the patient's preferrerd shoe mass and also their own shoe mass, all expressed as a proportion of body mass. The subjects' ‘preferred’ shoe mass (139-318g) showed the greatest symmetry in all the parameters examined (correlations 0.78-0.81 p<0.01 and <0.005), whereas there was no correlation between the subjects' own shoe mass (121-325g) and the symmetry coefficients measured.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Akiyoshi Mabuchi ◽  
Hiroshi Kitoh ◽  
Masato Inoue ◽  
Mitsuhiko Hayashi ◽  
Naoki Ishiguro ◽  
...  

Background. The sensomotor insole (SMI) has clinically been shown to be successful in treating an intoeing gait. We investigated the biomechanical effect of SMI on a pediatric intoeing gait by using three-dimensional gait analysis. Methods. Six patients with congenital clubfeet and four patients with idiopathic intoeing gait were included. There were five boys and five girls with the average age at testing of 5.6 years. The torsional profile of the lower limb was assessed clinically. Three-dimensional gait analysis was performed in the same shoes with and without SMI. Results. All clubfeet patients exhibited metatarsal adductus, while excessive femoral anteversion and/or internal tibial torsion was found in patients with idiopathic intoeing gait. SMI showed significant decreased internal rotation of the proximal femur in terminal swing phase and loading response phase. The internal rotation of the tibia was significantly smaller in mid stance phase and terminal stance phase by SMI. In addition, SMI significantly increased the walking speed and the step length. Conclusions. SMI improved abnormal gait patterns of pediatric intoeing gait by decreasing femoral internal rotation through the end of the swing phase and the beginning of the stance phase and by decreasing tibial internal rotation during the stance phase.


2008 ◽  
Vol 32 (2) ◽  
pp. 201-218 ◽  
Author(s):  
E. Sapin ◽  
H. Goujon ◽  
F. de Almeida ◽  
P. Fodé ◽  
F. Lavaste

This paper reports a comparison of the gait patterns of trans-femoral amputees using a single-axis prosthetic knee that coordinates ankle and knee flexions (Proteor's Hydracadence® system) with the gait patterns of patients using other knee joints without a knee–ankle link and the gait patterns of individuals with normal gait. The two patient groups were composed of 11 male trans-femoral amputees: six patients had the Hydracadence® joint (Group 1) and five patients had other prosthetic knees (Group 2). The reference group was made up of 23 normal volunteers (Group 3). In this work, trunk, hip, knee, and ankle 3-D motion was assessed using the VICON® system. Kinetic data were collected by two AMTI® force plates, and the knee moment was calculated via the 3-D equilibrium equations. An original questionnaire was used to assess the participants' activity level and clinical background. The results reveal that, during stance, all knee types guaranteed security. After heel strike, the plantar flexion of the ankle enabled by the Hydracadence® prosthesis seems to increase stability. During swing phase, hip and knee sagittal motion was nearly the same in both Group 1 and Group 2. By contrast, hallux and sole vertical positions were significantly higher in Group 1 than in Group 2; thus, it seems the link between the ankle joint and the knee joint makes foot clearance easier. No alteration of the lateral bending of the trunk was observed. The protocol proposed in this paper allows a functional comparison between prosthetic components by combining clinical data with objective 3-D kinematic and kinetic information. It might help to determine which prosthetic knees are best for a specific patient.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2727
Author(s):  
Hari Prasanth ◽  
Miroslav Caban ◽  
Urs Keller ◽  
Grégoire Courtine ◽  
Auke Ijspeert ◽  
...  

Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait analysis is key to the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This article presents a systematic review of wearable sensors and techniques used in real-time gait analysis, and their application to pathological gait. From four major scientific databases, we identified 1262 articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors and the shank and foot are the preferred placements. Insole pressure sensors are the most common sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on threshold or peak detection are the most widely used gait detection method. The heterogeneity of evaluation criteria prevented quantitative performance comparison of all methods. Although most studies predicted that the proposed methods would work on pathological gait, less than one third were validated on such data. Clinical applications of gait detection algorithms were considered, and we recommend a combination of IMU and rule-based methods as an optimal solution.


2021 ◽  
pp. 112070002110184
Author(s):  
Andrey A Korytkin ◽  
Younes M El Moudni ◽  
Yana S Novikova ◽  
Kirill A Kovaldov ◽  
Ekaterina A Morozova

Background: The supercapsular percutaneously-assisted total hip (SuperPATH) approach is a muscle sparing surgical technique for total hip arthroplasty (THA). The literature reports good clinical and functional results of the SuperPATH technique in the short term. We aimed to compare early outcomes and gait analysis of THA using the mini posterior approach (MPA) and supercapsular percutaneously-assisted total hip (SuperPATH) approach. Methods: 44 patients who underwent THA, were randomly allocated to either MPA or SuperPATH. The data were then collected prospectively (preoperatively and postoperatively at 6 weeks). Plain anteroposterior radiographs of the pelvis and instrumental gait analysis were obtained. The visual analogue scale (VAS), Harris Hip Score (HHS) and Hip disability and Osteoarthritis Outcome Scores (HOOS) were used to assess functional and clinical outcomes. Results: No significant difference was found in patients’ surgical outcomes. Patients in the SuperPATH group had less pain according to the VAS score at follow-up than the MPA group ( p < 0.01). There was also a significant improvement in HHS and HOOS scores for all patients ( p < 0.001) with the SuperPATH group showing superior changes. The comparison of mean differences in gait velocity between preoperative and 6 weeks postoperative result, revealed improvement in the SuperPATH group over the MPA group ( p = 0.06). Limping was more persistent in the MPA group. Kinematic parameters demonstrated improved hip joint excursion slightly higher in the MPA group. There was no significant improvement in kinetic and kinematic parameters at different walking moments for all patients at 6 weeks compared to preoperative gait patterns. Conclusions: SuperPATH and MPA both show excellent results. This study reveals that the SuperPATH technique was associated with lower postoperative pain levels, and higher physical function and quality of life. Improved functional outcomes allowed earlier postoperative rehabilitation and faster recovery. Specific improvement in gait patterns were identified with nonsignificant differences between the 2 approaches at 6 weeks follow-up.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Micaela Porta ◽  
Giuseppina Pilloni ◽  
Roberta Pili ◽  
Carlo Casula ◽  
Mauro Murgia ◽  
...  

Background. Although physical activity (PA) is known to be beneficial in improving motor symptoms of people with Parkinson’s disease (pwPD), little is known about the relationship between gait patterns and features of PA performed during daily life. Objective. To verify the existence of possible relationships between spatiotemporal and kinematic parameters of gait and amount/intensity of PA, both instrumentally assessed. Methods. Eighteen individuals affected by PD (10F and 8M, age 68.0 ± 10.8 years, 1.5 ≤ Hoehn and Yahr (H&Y) < 3) were required to wear a triaxial accelerometer 24 h/day for 3 consecutive months. They also underwent a 3D computerized gait analysis at the beginning and end of the PA assessment period. The number of daily steps and PA intensity were calculated on the whole day, and the period from 6:00 to 24:00 was grouped into 3 time slots, using 3 different cut-point sets previously validated in the case of both pwPD and healthy older adults. 3D gait analysis provided spatiotemporal and kinematic parameters of gait, including summary indexes of quality (Gait Profile Score (GPS) and Gait Variable Score (GVS)). Results. The analysis of hourly trends of PA revealed the existence of two peaks located in the morning (approximately at 10) and in the early evening (between 18 and 19). However, during the morning time slot (06:00–12:00), pwPD performed significantly higher amounts of steps (4313 vs. 3437 in the 12:00–18:00 time slot, p<0.001, and vs. 2889 in the 18:00–24:00 time slot, p=0.021) and of moderate-to-vigorous PA (43.2% vs. 36.3% in the 12:00–18:00 time slot, p=0.002, and vs. 31.4% in the 18:00–24:00 time slot, p=0.049). The correlation analysis shows that several PA intensity parameters are significantly associated with swing-phase duration (rho = −0.675 for sedentary intensity, rho = 0.717 for moderate-to-vigorous intensity, p<0.001), cadence (rho = 0.509 for sedentary intensity, rho = −0.575 for moderate-to-vigorous intensity, p<0.05), and overall gait pattern quality as expressed by GPS (rho = −0.498 to −0.606 for moderate intensity, p<0.05) and GVS of knee flexion-extension (rho = −0.536 for moderate intensity, p<0.05). Conclusions. Long-term monitoring of PA integrated by the quantitative assessment of spatiotemporal and kinematic parameters of gait may represent a useful tool in supporting a better-targeted prescription of PA and rehabilitative treatments in pwPD.


1992 ◽  
Vol 68 (2) ◽  
pp. 542-550 ◽  
Author(s):  
H. Hirschfeld ◽  
H. Forssberg

1. Anticipatory postural adjustments were studied in children (6-14 yr of age) walking on a treadmill while pulling a handle. Electromyographs (EMGs) and movements were recorded from the left arm and leg. 2. Postural activity in the leg muscles preceded voluntary arm muscle activity in all age groups, including the youngest children (6 yr of age). The latency to both leg and arm muscle activity, from a triggering audio signal, decreased with age. 3. In older children the latency to both voluntary and postural activity was influenced by the phase of the step cycle. The shortest latency to the first activated postural muscle occurred during single support phase in combination with a long latency to arm muscle activity. 4. In the youngest children, there was no phase-dependent modulation of the latency to the activation of the postural muscles. The voluntary activity was delayed during the beginning of the support phase resulting in a long delay between leg and arm muscle activity. 5. The postural muscle activation pattern was modified in a phase-dependent manner in all children. Lateral gastrocnemius (LG) and hamstring muscles (HAM) were activated during the early support phase, whereas tibialis anterior (TA) and quadriceps (Q) muscles were activated during the late support phase and during the swing phase. However, in the 6-yr-old children, LG was also activated in the swing phase. LG was activated before the HAM activity in the youngest children but after HAM in 14-yr-old children and adults. 6. The occurrence of LG activity in postural responses before heel strike suggests an immature (nonplantigrade) gating of postural activity.(ABSTRACT TRUNCATED AT 250 WORDS)


2016 ◽  
Vol 69 (suppl. 1) ◽  
pp. 53-58
Author(s):  
Milodrag Vranjes ◽  
Ivan Vukasinovic ◽  
Mirko Obradovic ◽  
Mile Bjelobrk ◽  
Zlatko Budinski ◽  
...  

Introduction. The most common injuries of the knee joint are injuries of the anterior cruciate ligament. The golden standard in reconstruction of this ligament is graft bone - patellar tendon - bone. Knowing the morphometric characteristics of these ligaments is crucial for anterior cruciate ligament reconstruction. This study was aimed at determining morphometric characteristics of the patellar tendon in vivo, measured intraoperatively, and at defining the correlation between the obtained values and body weight, height, gender and sport activity among different groups of athletes. Material and Methods. This study included 184 patients suffering from anterior cruciate ligament injuries who were admitted to the Clinical Center of Vojvodina, Department of Orthopedics and Traumatology. Results. The patellar tendon width ranged from 28 mm to 43 mm, averaging at 32.02 mm. The length of the patellar tendon ranged from 35 mm to 62 mm, averaging at 46.34 mm. The thickness of the patellar tendon ranged from 3 mm to 6 mm, averaging at 3.78 mm. The measured results were positively and statistically relevant with the body mass, height and body mass index. Discussion and Conclusion. The patellar tendon was thicker, longer and wider in persons with higher values of body weight and height. Men have statistically longer, thicker and wider patellar tendon than women. There was no statistically significant difference between morphometric characteristics of the patellar tendon among professional athletes and recreational athletes, neither was there one in the obtained geometric data of the patellar tendon among tested groups of professional athletes.


2021 ◽  
Author(s):  
Jiaen Wu ◽  
Henrik Maurenbrecher ◽  
Alessandro Schaer ◽  
Barna Becsek ◽  
Chris Awai Easthope ◽  
...  

<div><div><div><p>Motion capture systems are widely accepted as ground-truth for gait analysis and are used for the validation of other gait analysis systems.To date, their reliability and limitations in manual labeling of gait events have not been studied.</p><p><b>Objectives</b>: Evaluate human manual labeling uncertainty and introduce a new hybrid gait analysis model for long-term monitoring.</p><p><b>Methods</b>: Evaluate and estimate inter-labeler inconsistencies by computing the limits-of-agreement; develop a model based on dynamic time warping and convolutional neural network to identify a valid stride and eliminate non-stride data in walking inertial data collected by a wearable device; Gait events are detected within a valid stride region afterwards; This method makes the subsequent data computation more efficient and robust.</p><p><b>Results</b>: The limits of inter-labeler agreement for key</p><p>gait events of heel off, toe off, heel strike, and flat foot are 72 ms, 16 ms, 22 ms, and 80 ms, respectively; The hybrid model's classification accuracy for a stride and a non-stride are 95.16% and 84.48%, respectively; The mean absolute error for detected heel off, toe off, heel strike, and flat foot are 24 ms, 5 ms, 9 ms, and 13 ms, respectively.</p><p><b>Conclusions</b>: The results show the inherent label uncertainty and the limits of human gait labeling of motion capture data; The proposed hybrid-model's performance is comparable to that of human labelers and it is a valid model to reliably detect strides in human gait data.</p><p><b>Significance</b>: This work establishes the foundation for fully automated human gait analysis systems with performances comparable to human-labelers.</p></div></div></div>


2004 ◽  
Vol 20 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Brendan Burkett ◽  
James Smeathers ◽  
Timothy M. Barker

For amputees to perform an everyday task, or to participate in physical exercise, it is crucial that they have an appropriately designed and functional prosthesis. Past studies of transfemoral amputee gait have identified several limitations in the performance of amputees and in their prosthesis when compared with able-bodied walking, such as asymmetrical gait, slower walking speed, and higher energy demands. In particular the different inertial characteristics of the prosthesis relative to the sound limb results in a longer swing time for the prosthesis. The aim of this study was to determine whether this longer swing time could be addressed by modifying the alignment of the prosthesis. The following hypothesis was tested: Can the inertial characteristics of the prosthesis be improved by lowering the prosthetic knee joint, thereby producing a faster swing time? To test this hypothesis, a simple 2-D mathematical model was developed to simulate the swing-phase motion of the prosthetic leg. The model applies forward dynamics to the measured hip moment of the amputee in conjunction with the inertial characteristics of prosthetic components to predict the swing-phase motion. To evaluate the model and measure any change in prosthetic function, we conducted a kinematic analysis on four Paralympic runners as they ran. When evaluated, there was no significant difference (p > 0.05) between predicted and measured swing time. Of particular interest was how swing time was affected by changes in the position of the prosthetic knee axis. The model suggested that lowering the axis of the prosthetic knee could reduce the longer swing time. This hypothesis was confirmed when tested on the amputee runners.


Sign in / Sign up

Export Citation Format

Share Document