Specificity and age-related changes of antibodies to collagen type i in normal human sera

Autoimmunity ◽  
1994 ◽  
Vol 17 (3) ◽  
pp. 257-258 ◽  
Author(s):  
G. Nicoloff ◽  
D. Valcova ◽  
S. Baydanoff
Author(s):  
Joong Hyun Shim

Collagen type I production decreases with aging, leading to wrinkles and impaired skin function. Prostaglandin E2 (PGE2), a lipid-derived signaling molecule produced from arachidonic acid by cyclo-oxygenase, inhibits collagen production and induces matrix metallopeptidase 1 (MMP1) expression by fibroblasts in vitro. PGE2-induced collagen expression inhibition and MMP1 promotion are aging mechanisms. This study investigated the role of E-prostanoid 1 (EP1) in PGE2 signaling in normal human dermal fibroblasts (NHDFs). When EP1 expression was inhibited by EP1 small interfering RNA (siRNA), there were no significant changes in messenger RNA (mRNA) levels of collagen, type I, alpha 1 (COL1A1)/MMP1 between siRNA-transfected NHDFs and siRNA-transfected NHDFs with PGE2. This result showed that EP1 is a PGE2 receptor. Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after PGE2 treatment significantly increased by ~2.5 times. In addition, PGE2 treatment increased the intracellular Ca2+ concentration in NHDFs. These results indicated that PGE2 is directly associated with EP1 pathway–regulated ERK1/2 and inositol trisphosphate (IP3) signaling in NHDFs.


2018 ◽  
Vol 39 (9) ◽  
pp. 1803-1817 ◽  
Author(s):  
Dawid Walas ◽  
Karol Nowicki-Osuch ◽  
Dominic Alibhai ◽  
Eva von Linstow Roloff ◽  
Jane Coghill ◽  
...  

Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.


2019 ◽  
Vol 20 (22) ◽  
pp. 5555 ◽  
Author(s):  
Joong Hyun Shim

Collagen type I production decreases with aging, leading to wrinkles and impaired skin function. Prostaglandin E2 (PGE2), a lipid-derived signaling molecule produced from arachidonic acid by cyclo-oxygenase, inhibits collagen production, and induces matrix metallopeptidase 1 (MMP1) expression by fibroblasts in vitro. PGE2-induced collagen expression inhibition and MMP1 promotion are aging mechanisms. This study investigated the role of E-prostanoid 1 (EP1) in PGE2 signaling in normal human dermal fibroblasts (NHDFs). When EP1 expression was inhibited by EP1 small interfering RNA (siRNA), there were no significant changes in messenger RNA (mRNA) levels of collagen, type I, alpha 1 (COL1A1)/MMP1 between siRNA-transfected NHDFs and siRNA-transfected NHDFs with PGE2. This result showed that EP1 is a PGE2 receptor. Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after PGE2 treatment significantly increased by ~2.5 times. In addition, PGE2 treatment increased the intracellular Ca2+ concentration in NHDFs. These results indicated that PGE2 is directly associated with EP1 pathway-regulated ERK1/2 and inositol trisphosphate (IP3) signaling in NHDFs.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


2021 ◽  
Vol 22 (8) ◽  
pp. 4066
Author(s):  
Patrizia Marchese ◽  
Maria Lombardi ◽  
Maria Elena Mantione ◽  
Domenico Baccellieri ◽  
David Ferrara ◽  
...  

Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.


Sign in / Sign up

Export Citation Format

Share Document