5 Final Report on the Safety Assessment of Propylene Glycol Stearate and Propylene Glycol Stearate Self-Emulsifying

1983 ◽  
Vol 2 (5) ◽  
pp. 101-124 ◽  

Propylene Glycol Stearates (PGS) are a mixture of the mono- and diesters of triple-pressed stearic acid and propylene glycol and are used in a wide variety of cosmetic products. Studies with 14C-labeled PGS show that it is readily metabolized following ingestion. In rats, the acute oral LD50 has been shown to be approximately 25.8 g/kg. The raw ingredient produced no significant dermal toxicity, skin irritation, or eye irritation in acute tests with rabbits. Subchronic animal studies produced no evidence of oral or dermal toxicity. Propylene glycol monostea-rate was negative in in vitro microbial assays for mutagenicity. In clinical studies, PGS produced no significant skin irritation at concentrations up to 55% nor skin sensitization on formulations containing 2.5%. Photo-contact allergenicity tests on product formulations containing 1.5% PGS were negative. From the available information, it is concluded that Propylene Glycol Stearates are safe as cosmetic ingredients in the present practices of use.

1990 ◽  
Vol 1 (2) ◽  
pp. 109-141 ◽  

The Carbomers are synthetic, high molecular weight, nonlinear polymers of acrylic acid, cross-linked with a polyalkenyl polyether. The Carbomer polymers are used in cosmetics and emulsifying agents at concentrations up to 50%. Acute oral animal studies showed that Carbomers-910, -934, -934P, -940, and -941 have low toxicities when ingested. Rabbits showed minimal skin irritation and zero to moderate eye irritation when tested with Carbomers-910 and -934. Subchronic feeding of rats and dogs with Carbomer-934 in the diet resulted in lower than normal body weights, but no pathological changes were observed. Dogs chronically fed Carbomer-934P manifested gastrointestinal irritation and marked pigment deposition within Kupffer cells of the liver. Clinical studies with Carbomers showed that these polymers have low potential for skin irritation and sensitization at concentrations up to 100%. Carbomer-934 demonstrated low potential for phototoxicity and photo-contact allergenicity. On the basis of the available information presented and as qualified in the report, it is concluded that the Carbomers are safe as cosmetic ingredients.


1990 ◽  
Vol 1 (2) ◽  
pp. 1-11 ◽  

Glycol Stearate, Glycol Stearate SE, and Glycol Distearate consist primarily of the mono- and diesters of triple-pressed stearic acid. They are used in numerous categories of cosmetic products at concentrations ranging from less than 0.1 to 10%. Animal data for acute oral toxicity, skin and eye irritation, and sensitization show that these ingredients have low acute toxicity. A repeated insult patch test with 50% Glycol Distearate on 125 subjects presented no evidence of skin irritation or hypersensitivity. Human studies using formulations containing Glycol Stearate at levels of 2-5% reported no skin irritation or sensitization. Subchronic testing has not been adequately investigated in laboratory animals. Human test data for formulations containing > 4% Glycol Stearate or Glycol Distearate should be considered. Based on the available information presented herein, it is concluded that Glycol Stearate, Glycol Stearate SE, and Glycol Distearate are safe as cosmetic ingredients in the present practices of use and concentration.


1987 ◽  
Vol 6 (1) ◽  
pp. 77-120 ◽  

Toluene has a wide variety of noncosmetic applications. However, the cosmetic use is limited to nail products at concentrations up to 50%. Toluene was practically nontoxic when given orally to rats; acute oral LD50 values ranged from 2.6 g/kg to 7.5 g/kg. Results of animal studies indicated that undiluted Toluene is a skin irritant. No skin irritation or sensitization was observed in subjects treated with cosmetic products containing 31-33% Toluene. No phototoxic or photoallergic reactions were noted in subjects treated with 25% or 30% Toluene. The sole cosmetic use of Toluene is in products intended to be applied directly to the nail; therefore, human skin exposure to this ingredient will be minimal under conditions of cosmetic use. On the basis of the available data and the limited user skin exposure from cosmetic products containing Toluene, it is concluded that this ingredient is safe for cosmetic use at the present practices of use and concentration.


1983 ◽  
Vol 2 (7) ◽  
pp. 35-60 ◽  

Nonoxynols are chemically stable ethoxylated alkylphenols which are chemically foaming and solubilizing agents. Estimates of the acute oral LD50s of nine of the Nonoxynols (-2 to 15) range from 0.62 to 7.4 g/kg in several animal species. Acute dermal toxicity studies in rabbits produced an LD50 range of 1.8 ml/kg to 4.4 g/kg. Skin irritation tests on rabbits indicated that Nonoxynols are nonirritating to moderately irritating. Nonoxynol compounds with short ethoxylated chains are generally severe ocular irritants, whereas long-chained Nonoxynols are only slightly irritating to the rabbit eye. No evidence of carcinogenicity was observed when Nonoxynol-4 and 9 were fed to both dogs and rats. A mutagenicity study of these two compounds by the Ames test was negative. Undiluted Nonoxynol-4 and 9 were nonirritating and nonsensitizing in clinical studies. A 50% solution of Nonoxynol-15 and/or Nonoxynol-50 produced no irritation or sensitization when tested on 168 subjects, nor was there evidence of phototoxicity when tested on a subset of this population. It is concluded that Nonoxynols 2, 4, 8, 9, 10, 12, 14, 15, 30, 40, and 50 are safe as cosmetic ingredients.


1985 ◽  
Vol 4 (5) ◽  
pp. 107-146 ◽  

The 7 Stearates described in this report are either oily liquids or waxy solids that are primarily used in cosmetics as skin emollients at concentrations up to 25 percent. The toxicology of the Stearates has been assessed in a number of animal studies. They have low acute oral toxicity and are essentially nonirritating to the rabbit eye when tested at and above use concentration. At cosmetic use concentrations the Stearates are, at most, minimally irritating to rabbit skin. In clinical studies the Stearates and cosmetic products containing them were at most minimally to mildly irritating to the human skin, essentially nonsensitizing, nonphototoxic and nonphotosensitizing. Comedogenicity is a potential health effect that should be considered when the Stearate ingredients are used in cosmetic formulations. On the basis of the information in this report, it is concluded that Butyl, Cetyl, Isobutyl, Isocetyl, Isopropyl, Myristyl, and Octyl Stearate are safe as cosmetic ingredients in the present practices of use.


1983 ◽  
Vol 2 (5) ◽  
pp. 1-34 ◽  

Sodium Laureth Sulfate and Ammonium Laureth Sulfate are used in cosmetic products as cleansing agents, emulsifiers, stabilizers, and solubilizers. The ingredients have been shown to produce eye and/or skin irritation in experimental animals and in some human test subjects; irritation may occur in some users of cosmetic formulations containing the ingredients under consideration. The irritant effects are similar to those produced by other detergents, and the severity of the irritation appears to increase directly with concentration. However, Sodium and Ammonium Laureth Sulfate have not evoked adverse responses in any other toxicological testing. On the basis of available information, the Panel concludes that Sodium Laureth Sulfate and Ammonium Laureth Sulfate are safe as presently used in cosmetic products.


1990 ◽  
Vol 1 (2) ◽  
pp. 13-35 ◽  

The Palmitates used in cosmetic products are esters of palmitic acid and octyl, cetyl, or isopropyl alcohol. The acute oral LD50 is estimated from studies with rats to be greater than 14.4 g/kg for Cetyl Palmitate and greater than 64.0 g/kg for Octyl and Isopropyl Palmitates. Acute studies with rabbits showed no evidence of dermal toxicity for any of the Palmitates. Isopropyl Palmitate was “well tolerated” and Octyl Palmitate was nontoxic in separate subchronic dermal studies. Rabbit skin tests with the Palmitates showed that they are nonirritating and nonsensitizing. Also, Draize rabbit eye irritation tests on the Palmitates produced either no or only very slight ocular irritation. One of three formulations containing Octyl Palmitate at concentrations between 40% and 50% produced mild irritation. Formulations containing Cetyl Palmitate at concentration of 2.7% were minimally irritating and produced no signs of sensitization, phototoxicity, or photo contact allergenicity. A formulation containing 45.6% Isopropyl Palmitate produced no signs of irritation, sensitization, phototoxicity, or photo contact allergenicity. From the available information, it is concluded that Octyl Palmitate, Cetyl Palmitate, and Isopropyl Palmitate are safe as cosmetic ingredients in the present practices of use and concentration.


1983 ◽  
Vol 2 (7) ◽  
pp. 75-86 ◽  

Potassium and TEA-Coco-Hydrolyzed Animal Proteins (PCHAP and TEA-CHAP) are salts of the condensation product of coconut acid and hydrolyzed animal protein. They are used in cosmetic products as detergents, foamers, and levelers. Acute oral toxicity studies showed that both PCHAP and TEA-CHAP were practically nontoxic when ingested. Both ingredients at concentrations of 10%-100% were practically nonirritating to moderately irritating when instilled in the eyes of rabbits. Both were nonirritating to mildly irritating when applied at concentrations of 10%-50% to the skin of rabbits. Guinea pig sensitization studies with both PCHAP and TEA-CHAP were negative. PCHAP and TEA-CHAP, at concentrations of 2% 10% were nonirritating to practically nonirritating in humans. In a repeated insult patch test, PCHAP gave a positive sensitization reaction in two of 168 subjects; two additional subjects showed cumulative irritation and one other was reported to have a nonspecific irritation. One subject out of 28 tested did not demonstrate significant irritation or sensitivity to either PCHAP or TEA-CHAP, but was photosensitized to both ingredients. On the basis of the available information, the Panel concludes that Potas-sium-Coco-Hydrolyzed Animal Protein and TEA-Coco-Hydrolyzed Animal Protein are safe as cosmetic ingredients in the present practices of use as recorded in this report.


2004 ◽  
Vol 23 (2_suppl) ◽  
pp. 55-94 ◽  

The safety of 43 glyceryl monoesters listed as cosmetic ingredients was reviewed in a safety assessment completed in 2000. Additional safety test data pertaining to Glyceryl Rosinate and Glyceryl Hydrogenated Rosinate were received and served as the basis for this amended report. Glyceryl monoesters are used mostly as skin-conditioning agents—emollients and/or surfactant—emulsifying agents in cosmetics. The following 20 glyceryl monoesters are currently reported to be used in cosmetics: Glyceryl Laurate, Glyceryl Alginate, Glyceryl Arachidonate, Glyceryl Behenate, Glyceryl Caprylate, Glyceryl Caprylate/Caprate, Glyceryl Cocoate, Glyceryl Erucate, Glyceryl Hydroxystearate, Glyceryl Isostearate, Glyceryl Lanolate, Glyceryl Linoleate, Glyceryl Linolenate, Glyceryl Myristate, Glyceryl Oleate/Elaidate, Glyceryl Palmitate, Glyceryl Polyacrylate, Glyceryl Rosinate, Glyceryl Stearate/Acetate, and Glyceryl Undecylenate. Concentration of use data received from the cosmetics industry in 1999 indicate that Glyceryl Monoesters are used at concentrations up to 12 % in cosmetic products. Glyceryl Monoesters are not pure monoesters, but are mostly mixtures with mono-, di-, and tri-esters. The purity of commercial and conventional Monoglyceride (Glyceryl Monoester) is a minimum of 90%. Glyceryl Monoesters (monoglycerides) are metabolized to free fatty acids and glycerol, both of which are available for the resynthesis of triglycerides. Glyceryl Laurate enhanced the penetration of drugs through cadaverous skin and hairless rat skin in vitro and has been described as having a wide spectrum of antimicrobial activity. A low-grade irritant response was observed following inhalation of an aerosol containing 10% Glyceryl Laurate by test animals. Glyceryl monoesters have little acute or short-term toxicity in animals, and no toxicity was noted following chronic administration of a mixture consisting mostly of glyceryl di- and mono- esters. Glyceryl Laurate did have strong hemolytic activity in an in vitro assay using sheep erythrocytes. Glyceryl Laurate, Glyceryl Isostearate, or Glyceryl Citrate/Lactate/Linoleate/Oleate were not classified as ocular irritants in rabbits. Undiluted glyceryl monoesters may produce minor skin irritation, especially in abraded skin, but in general these ingredients are not irritating at concentrations used in cosmetics. Glyceryl monoesters are not sensitizers, except that Glyceryl Rosinate and Hydrogenated Glyceryl Rosinate may contain residual rosin, which can cause allergic reactions. These ingredients are not photosensitizers. Glyceryl Citrate/Lactate/Linoleate/Oleate was not mutagenic in the Ames test system. Glyceryl Laurate exhibited antitumor activity and Glyceryl Stearate was negative in a tumor promotion assay. At concentrations higher than used in cosmetics, Glyceryl Laurate did cause moderate erythema in human repeat-insult patch test (RIPT) studies, but the other glyceryl monoesters tested failed to produce any significant positive reactions. Glyceryl Rosinate was irritating to animal skin at 50%, but did not produce sensitization in clinical tests at concentrations up to 10% and covered with semioccluded patches. There is reported use of Glyceryl Rosinate at 12% in mascara, which is somewhat higher than the concentration in the clinical testing. It was reasoned that the available data do support the safety of this use because there would be minimal contact with the skin and no occlusion. The safety of Arachidonic Acid was not documented and substantiated for cosmetic product use in an earlier safety assessment and those same safety questions apply to Glyceryl Arachidonate. Based on these data, the Cosmetic Ingredient Review (CIR) Expert Panel found that these glyceryl monoesters are safe as cosmetic ingredients in the present practices of use and concentration: except that the available data are insufficient to support the safety of Glyceryl Arachidonate. Additional data needed to support the safety of Glyceryl Arachidonate include (1) dermal absorption data; and, based on the results of the absorption studies, there may be a need for (2) immunomodula-tory data; (3) carcinogenicity and photocarcinogenicity data; and (4) human irritation, sensitization, and photosensitization data.


1996 ◽  
Vol 15 (2) ◽  
pp. 98-139 ◽  

The dialdehyde Glutaral (also commonly called glutaraldehyde) is used in a wide variety of cosmetics as a preservative. In vitro dermal penetration studies of Glutaral indicate low penetration through animal skin and even less through human skin. The oral LD50 of Glutaral for rats ranged from 66 mg/kg up to 733 mg/kg. A 28-day dermal toxicity study of Glutaral produced skin irritation and slight effects on weight and blood chemistry with concentrations as low as 50 mg/kg/day. Animal skin irritation was dose-dependant, with a no-effect concentration of 1%. Ocular exposure to Glutaral caused severe irritation in rabbits at concentrations 1%, with a no-effect level of 0.1%. Glutaral was not embryotoxic, fetotoxic, or teratogenic at concentrations that did not cause severe maternal toxicity. The no observable adverse effects level for reproduction toxicity was > 1,000 ppm. Bacterial mutagenesis tests produced mixed results, as would be expected for a preservative. In most mammalian system mutagenesis tests, Glutaral was not genotoxic. In a 2-year drinking water study in rats, there was an increase in large granular lymphocytic leukemia (LGLL), but only in females administered 50–1,000 ppm Glutaral. The response was not dose dependent. Clinical studies report some evidence of dermal irritation and sensitization, but no photosensitization. Occupational data and animal studies indicate that inhalation of Glutaral can cause respiratory irritation, in addition to skin effects. Evaluation of the increased incidence of LGLL in the 2-year drinking water study indicated that the incidence was within the historical control levels for this spontaneously occurring neoplasm. These data, however, were not considered sufficient to base a finding of safety of Glutaral in products intended for prolonged use. It was concluded that a 2-year dermal carcinogenicity study following National Toxicology Program (NTP) procedures was needed to complete the safety assessment of Glutaral for use in leave-on products. For rinse-off products, it was concluded that the ocular and dermal irritancy of Glutaral could be substantially avoided if the concentration did not exceed 0.5% and exposure was only brief and discontinuous. Because it can cause respiratory irritation, it was concluded that Glutaral should not be used in aerosolized cosmetic products.


Sign in / Sign up

Export Citation Format

Share Document