Final Report of the Amended Safety Assessment of Glyceryl Lau rate, Glyceryl Lau rate SE, Glyceryl Laurate/Oleate, Glyceryl Adipate, Glyceryl Alginate, Glyceryl Arachidate, Glyceryl Arachidonate, Glyceryl Behenate, Glyceryl Caprate, Glyceryl Caprylate, Glyceryl Caprylate/Caprate, Glyceryl Citrate/Lactate/Linoleate/Oleate, Glyceryl Cocoate, Glyceryl Collagenate, Glyceryl Erucate, Glyceryl Hydrogenated Rosinate, Glyceryl Hydrogenated Soyate, Glyceryl Hydroxystearate, Glyceryl Isopalmitate, Glyceryl Isostearate, Glyceryl Isostearate/Myristate, Glyceryl Isostearates, Glyceryl Lanolate, Glyceryl Linoleate, Glyceryl Linolenate, Glyceryl Montanate, Glyceryl Myristate, Glyceryl Isotridecanoate/Stearate/Adipate, Glyceryl Oleate SE, Glyceryl Oleate/Elaidate, Glyceryl Palmitate, Glyceryl Palmitate/Stearate, Glyceryl Palmitoleate, Glyceryl Pentadecanoate, Glyceryl Polyacrylate, Glyceryl Rosinate, Glyceryl Sesquioleate, Glyceryl/Sorbitol Oleate/Hydroxystearate, Glyceryl Stearate/Acetate, Glyceryl Stearate/Maleate, Glyceryl Tallowate, Glyceryl Thiopropionate, and Glyceryl Undecylenate1

2004 ◽  
Vol 23 (2_suppl) ◽  
pp. 55-94 ◽  

The safety of 43 glyceryl monoesters listed as cosmetic ingredients was reviewed in a safety assessment completed in 2000. Additional safety test data pertaining to Glyceryl Rosinate and Glyceryl Hydrogenated Rosinate were received and served as the basis for this amended report. Glyceryl monoesters are used mostly as skin-conditioning agents—emollients and/or surfactant—emulsifying agents in cosmetics. The following 20 glyceryl monoesters are currently reported to be used in cosmetics: Glyceryl Laurate, Glyceryl Alginate, Glyceryl Arachidonate, Glyceryl Behenate, Glyceryl Caprylate, Glyceryl Caprylate/Caprate, Glyceryl Cocoate, Glyceryl Erucate, Glyceryl Hydroxystearate, Glyceryl Isostearate, Glyceryl Lanolate, Glyceryl Linoleate, Glyceryl Linolenate, Glyceryl Myristate, Glyceryl Oleate/Elaidate, Glyceryl Palmitate, Glyceryl Polyacrylate, Glyceryl Rosinate, Glyceryl Stearate/Acetate, and Glyceryl Undecylenate. Concentration of use data received from the cosmetics industry in 1999 indicate that Glyceryl Monoesters are used at concentrations up to 12 % in cosmetic products. Glyceryl Monoesters are not pure monoesters, but are mostly mixtures with mono-, di-, and tri-esters. The purity of commercial and conventional Monoglyceride (Glyceryl Monoester) is a minimum of 90%. Glyceryl Monoesters (monoglycerides) are metabolized to free fatty acids and glycerol, both of which are available for the resynthesis of triglycerides. Glyceryl Laurate enhanced the penetration of drugs through cadaverous skin and hairless rat skin in vitro and has been described as having a wide spectrum of antimicrobial activity. A low-grade irritant response was observed following inhalation of an aerosol containing 10% Glyceryl Laurate by test animals. Glyceryl monoesters have little acute or short-term toxicity in animals, and no toxicity was noted following chronic administration of a mixture consisting mostly of glyceryl di- and mono- esters. Glyceryl Laurate did have strong hemolytic activity in an in vitro assay using sheep erythrocytes. Glyceryl Laurate, Glyceryl Isostearate, or Glyceryl Citrate/Lactate/Linoleate/Oleate were not classified as ocular irritants in rabbits. Undiluted glyceryl monoesters may produce minor skin irritation, especially in abraded skin, but in general these ingredients are not irritating at concentrations used in cosmetics. Glyceryl monoesters are not sensitizers, except that Glyceryl Rosinate and Hydrogenated Glyceryl Rosinate may contain residual rosin, which can cause allergic reactions. These ingredients are not photosensitizers. Glyceryl Citrate/Lactate/Linoleate/Oleate was not mutagenic in the Ames test system. Glyceryl Laurate exhibited antitumor activity and Glyceryl Stearate was negative in a tumor promotion assay. At concentrations higher than used in cosmetics, Glyceryl Laurate did cause moderate erythema in human repeat-insult patch test (RIPT) studies, but the other glyceryl monoesters tested failed to produce any significant positive reactions. Glyceryl Rosinate was irritating to animal skin at 50%, but did not produce sensitization in clinical tests at concentrations up to 10% and covered with semioccluded patches. There is reported use of Glyceryl Rosinate at 12% in mascara, which is somewhat higher than the concentration in the clinical testing. It was reasoned that the available data do support the safety of this use because there would be minimal contact with the skin and no occlusion. The safety of Arachidonic Acid was not documented and substantiated for cosmetic product use in an earlier safety assessment and those same safety questions apply to Glyceryl Arachidonate. Based on these data, the Cosmetic Ingredient Review (CIR) Expert Panel found that these glyceryl monoesters are safe as cosmetic ingredients in the present practices of use and concentration: except that the available data are insufficient to support the safety of Glyceryl Arachidonate. Additional data needed to support the safety of Glyceryl Arachidonate include (1) dermal absorption data; and, based on the results of the absorption studies, there may be a need for (2) immunomodula-tory data; (3) carcinogenicity and photocarcinogenicity data; and (4) human irritation, sensitization, and photosensitization data.

1983 ◽  
Vol 2 (5) ◽  
pp. 101-124 ◽  

Propylene Glycol Stearates (PGS) are a mixture of the mono- and diesters of triple-pressed stearic acid and propylene glycol and are used in a wide variety of cosmetic products. Studies with 14C-labeled PGS show that it is readily metabolized following ingestion. In rats, the acute oral LD50 has been shown to be approximately 25.8 g/kg. The raw ingredient produced no significant dermal toxicity, skin irritation, or eye irritation in acute tests with rabbits. Subchronic animal studies produced no evidence of oral or dermal toxicity. Propylene glycol monostea-rate was negative in in vitro microbial assays for mutagenicity. In clinical studies, PGS produced no significant skin irritation at concentrations up to 55% nor skin sensitization on formulations containing 2.5%. Photo-contact allergenicity tests on product formulations containing 1.5% PGS were negative. From the available information, it is concluded that Propylene Glycol Stearates are safe as cosmetic ingredients in the present practices of use.


1983 ◽  
Vol 2 (7) ◽  
pp. 35-60 ◽  

Nonoxynols are chemically stable ethoxylated alkylphenols which are chemically foaming and solubilizing agents. Estimates of the acute oral LD50s of nine of the Nonoxynols (-2 to 15) range from 0.62 to 7.4 g/kg in several animal species. Acute dermal toxicity studies in rabbits produced an LD50 range of 1.8 ml/kg to 4.4 g/kg. Skin irritation tests on rabbits indicated that Nonoxynols are nonirritating to moderately irritating. Nonoxynol compounds with short ethoxylated chains are generally severe ocular irritants, whereas long-chained Nonoxynols are only slightly irritating to the rabbit eye. No evidence of carcinogenicity was observed when Nonoxynol-4 and 9 were fed to both dogs and rats. A mutagenicity study of these two compounds by the Ames test was negative. Undiluted Nonoxynol-4 and 9 were nonirritating and nonsensitizing in clinical studies. A 50% solution of Nonoxynol-15 and/or Nonoxynol-50 produced no irritation or sensitization when tested on 168 subjects, nor was there evidence of phototoxicity when tested on a subset of this population. It is concluded that Nonoxynols 2, 4, 8, 9, 10, 12, 14, 15, 30, 40, and 50 are safe as cosmetic ingredients.


1988 ◽  
Vol 7 (3) ◽  
pp. 279-333 ◽  

p-Aminophenol (PAP), m-Aminophenol (MAP), and o-Aminophenol (OAP) are used in permanent (oxidative) hair dyes at concentrations from 0.1 to 5%. In vivo and in vitro skin absorption studies indicated that 11% of the dermally applied 14C-PAP was detected in the excreta, viscera, and skin of the test animals. The oral LD50s of PAP, MAP, and OAP in rats ranged from 600 to 1300 mg/kg. Topical application of PAP at concentrations up to 8.00 g/kg to the skin of New Zealand white (NZW) rabbits produced no skin irritation and no mortality. PAP, MAP, and OAP were irritating to eyes of NZW rabbits at a concentration of 2.5%. MAP at 3% was nonsensitizing in guinea pigs; PAP at 2% sensitized 9 of 10 guinea pigs. Neither PAP nor MAP produced photosensitization in guinea pigs. No treatment-related toxicity was found in three separate four-generation chronic dermal toxicity and reproduction studies of hair dye formulations containing the three Aminophenols. Additional studies on the pure ingredients were also nonteratogenic; embryotoxicity was reported. A range of results was obtained from studies assessing the mutagenic activity of the Aminophenols. PAP tested positive in six of eight mutagenicity tests. MAP and OAP gave positive results in two of eight and five of seven mutagenicity tests, respectively. Oxidative hair dye formulations containing PAP, MAP, and OAP did not produce gross or microscopic alterations or have carcinogenic effects after chronic topical application to mice. Feeding of OAP-HCl and PAP to rats at a dose of 8 mmol/kg produced neither hepatic cirrhosis nor neoplastic lesions. A 3% solution of MAP in an aqueous vehicle was neither a significant irritant nor sensitizer in two clinical studies. A variety of epidemiological studies have not indicated that occupational exposure to, and personal use of, hair dyes containing the Aminophenols presented a carcinogenic risk. A discussion of the significance of the mutagenic data in the safety assessment and the potential for human effects is presented. On the basis of the available animal and clinical data presented in this report it is concluded that p-, m-, and o-Aminophenols are safe as cosmetic ingredients in the present practices of use and concentrations.


1990 ◽  
Vol 1 (2) ◽  
pp. 109-141 ◽  

The Carbomers are synthetic, high molecular weight, nonlinear polymers of acrylic acid, cross-linked with a polyalkenyl polyether. The Carbomer polymers are used in cosmetics and emulsifying agents at concentrations up to 50%. Acute oral animal studies showed that Carbomers-910, -934, -934P, -940, and -941 have low toxicities when ingested. Rabbits showed minimal skin irritation and zero to moderate eye irritation when tested with Carbomers-910 and -934. Subchronic feeding of rats and dogs with Carbomer-934 in the diet resulted in lower than normal body weights, but no pathological changes were observed. Dogs chronically fed Carbomer-934P manifested gastrointestinal irritation and marked pigment deposition within Kupffer cells of the liver. Clinical studies with Carbomers showed that these polymers have low potential for skin irritation and sensitization at concentrations up to 100%. Carbomer-934 demonstrated low potential for phototoxicity and photo-contact allergenicity. On the basis of the available information presented and as qualified in the report, it is concluded that the Carbomers are safe as cosmetic ingredients.


1991 ◽  
Vol 10 (1) ◽  
pp. 135-192 ◽  

Ammonium and Glyceryl Thioglycolates and Thioglycolic Acid are used predominantly in cosmetic permanent waving lotions at concentrations up to 15.4% (as Thioglycolic Acid). At use concentrations, these cosmetic ingredients are only slightly toxic in acute single oral and dermal exposures. In repeated dermal tests for extended periods of exposure, these ingredients were toxic. Commercial permanent wave products produced transient conjunctival redness to both rinsed and unrinsed eyes. The results of skin testing for irritation and sensitization of these Thioglycolates depends on the type of test system used. Under occlusive patch testing, the data indicate that these ingredients are cumulative irritants and possibly weak sensitizers, but not under semi-occlusive test conditions. In clinical patients, mainly hairdressers, Glyceryl Thioglycolate elicited allergic reactions at concentrations down to 0.25%. It is concluded that these cosmetic ingredients may be safely used at infrequent intervals. However, hairdressers should avoid skin contact.


1996 ◽  
Vol 15 (2) ◽  
pp. 98-139 ◽  

The dialdehyde Glutaral (also commonly called glutaraldehyde) is used in a wide variety of cosmetics as a preservative. In vitro dermal penetration studies of Glutaral indicate low penetration through animal skin and even less through human skin. The oral LD50 of Glutaral for rats ranged from 66 mg/kg up to 733 mg/kg. A 28-day dermal toxicity study of Glutaral produced skin irritation and slight effects on weight and blood chemistry with concentrations as low as 50 mg/kg/day. Animal skin irritation was dose-dependant, with a no-effect concentration of 1%. Ocular exposure to Glutaral caused severe irritation in rabbits at concentrations 1%, with a no-effect level of 0.1%. Glutaral was not embryotoxic, fetotoxic, or teratogenic at concentrations that did not cause severe maternal toxicity. The no observable adverse effects level for reproduction toxicity was > 1,000 ppm. Bacterial mutagenesis tests produced mixed results, as would be expected for a preservative. In most mammalian system mutagenesis tests, Glutaral was not genotoxic. In a 2-year drinking water study in rats, there was an increase in large granular lymphocytic leukemia (LGLL), but only in females administered 50–1,000 ppm Glutaral. The response was not dose dependent. Clinical studies report some evidence of dermal irritation and sensitization, but no photosensitization. Occupational data and animal studies indicate that inhalation of Glutaral can cause respiratory irritation, in addition to skin effects. Evaluation of the increased incidence of LGLL in the 2-year drinking water study indicated that the incidence was within the historical control levels for this spontaneously occurring neoplasm. These data, however, were not considered sufficient to base a finding of safety of Glutaral in products intended for prolonged use. It was concluded that a 2-year dermal carcinogenicity study following National Toxicology Program (NTP) procedures was needed to complete the safety assessment of Glutaral for use in leave-on products. For rinse-off products, it was concluded that the ocular and dermal irritancy of Glutaral could be substantially avoided if the concentration did not exceed 0.5% and exposure was only brief and discontinuous. Because it can cause respiratory irritation, it was concluded that Glutaral should not be used in aerosolized cosmetic products.


1983 ◽  
Vol 2 (7) ◽  
pp. 17-34 ◽  

The PEG Stearates are the polyethylene glycol esters of stearic acid. These nonionic surfactants are used mainly in cosmetic products as surfactants and emollients at concentrations up to 25%. The PEG Stearates, whose average number of ethylene oxide monomers range from 2 to 150, were nonlethal to test animals up to 10 g/kg. They gave evidence of only low-level skin irritation and minimal eye irritation when tested at 100% concentrations in test animals. PEG-8, 40, and 100 Stearates produced no significant changes in growth mortality rates, histopathologic observations or hematologic values in long-term feeding studies. Multiple generation studies of PEG-8 and 40 Stearates were negative for effects on reproduction; the presence or absence of a carcinogenic effect was not reported. Clinical studies on the PEG Stearates indicated that these ingredients are neither irritants nor sensitizers at concentrations of ≥ 25%. There was no evidence of phototoxicity or photosensitization of PEG-2 or 8 Stearates. It is concluded that PEG-2, 6, 8, 12, 20, 32, 40, 50, 100, and 150 Stearates are safe as cosmetic ingredients in the present practices of concentration and use.


1990 ◽  
Vol 1 (2) ◽  
pp. 1-11 ◽  

Glycol Stearate, Glycol Stearate SE, and Glycol Distearate consist primarily of the mono- and diesters of triple-pressed stearic acid. They are used in numerous categories of cosmetic products at concentrations ranging from less than 0.1 to 10%. Animal data for acute oral toxicity, skin and eye irritation, and sensitization show that these ingredients have low acute toxicity. A repeated insult patch test with 50% Glycol Distearate on 125 subjects presented no evidence of skin irritation or hypersensitivity. Human studies using formulations containing Glycol Stearate at levels of 2-5% reported no skin irritation or sensitization. Subchronic testing has not been adequately investigated in laboratory animals. Human test data for formulations containing > 4% Glycol Stearate or Glycol Distearate should be considered. Based on the available information presented herein, it is concluded that Glycol Stearate, Glycol Stearate SE, and Glycol Distearate are safe as cosmetic ingredients in the present practices of use and concentration.


1992 ◽  
Vol 11 (1) ◽  
pp. 57-74 ◽  

Jojoba Oil is obtained from seeds of the desert shrub, Jojoba ( Simmondsia chinensis) and is used in cosmetic products at concentrations ranging from ≥ 0.1% to 25.0%. The oral LD50 for male rats is greater than 21.5 ml/kg. Results from short-term oral toxicity studies of Jojoba Oil indicated no treatment-related effects. Only slight conjunctival hyperemia was observed in the eyes of rabbits 1 h after the instillation of Jojoba Oil. Reactions had cleared by 24-h post-instillation. No significant skin irritation reactions were observed in albino guinea pigs patch tested with undiluted Jojoba Oil. In a maximization test, no sensitization reactions were observed in 20 male and female albino marmots patch tested with 10.0% Jojoba alcohol. A mixture of Jojoba Oil and hydrogenated Jojoba Wax was not mutagenic, with and without activation, in the Ames assay. A topical oil product containing 0.5% Jojoba Oil and a lip balm product containing 20.0% Jojoba Oil were classified as nonirritants and nonsensitizers to humans. Sensitization reactions to undiluted Jojoba Oil were not observed in a group of 28 patients with no known sensitivities. On the basis of the available animal and clinical data presented in this report, it is concluded that Jojoba Oil and Jojoba Wax are safe as cosmetic ingredients in the present practices of use and concentration.


1987 ◽  
Vol 6 (3) ◽  
pp. 279-320 ◽  

Retinol is the naturally occurring form of vitamin A; Retinyl Palmitate is the ester of Retinol and Palmitic Acid. In acute oral studies, Retinol was slightly toxic to mice, and Retinyl Palmitate was practically nontoxic in mice and rats. Large single doses can be lethal. It is recognized that Retinol is essential for reproduction; however, high intake of Retinol has produced adverse effects on several reproductive functions. Vitamin A was nonmutagenic in several in vitro tests. There is no evidence that vitamin A is carcinogenic. However, the vitamin has both enhanced and inhibited responses to viral or chemical carcinogens. Cosmetic products containing 0.1-1% Retinyl Palmitate were, at most, slightly irritating and nonsensitizing when tested on a total of 607 subjects. Results of cumulative irritation tests of two products containing 0.1% Retinyl Palmitate indicated that the products were nonirritating and non-sensitizing. On the basis of the available animal and clinical data presented in this report, it is concluded that Retinyl Palmitate and Retinol are safe as cosmetic ingredients in the present practices of use and concentration.


Sign in / Sign up

Export Citation Format

Share Document