Dynamics of the protected ash-oak «Vorskla River Forest»

2001 ◽  
pp. 71-86 ◽  
Author(s):  
V. N. Ukhachova ◽  
E. I. Lomova

The diversity and dynamics of vegetation communities of the ash-oak «Vorskla River Forest» which represents the zonal forest type of the Middle-Russian forest-steppe is analyzed on the basis of the large-scale vegetation mapping data of 1958, 1964, 1984, and 1996. The plant cover mesophylization trend, connected with the proper changes of the climate in the study region, can be traced through the period of observation.

2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


2018 ◽  
pp. 19-39
Author(s):  
M. A. Makarova

Geobotanical survey of floodplain natural complexes near gypsum outcrops in the Pinega river valley was done in 2015. Large-scale geobotanical map of the key polygon (scale 1 : 30 000) was composed. Typological units of vegetation were selected on the basis of the composition of dominant species and groups of indicator species. Homogeneous and heterogeneous territorial units of vegetation (serial series, combinations, environmental series) were used. 53 mapped unit types (25 homogeneous types and 28 heterogeneous types) were recognized. The floodplain vegetation consists of 17 homogeneous types of plant communities, 3 series, 14 combinations and 6 ecological series. The sites of old floodplain forests, such as willow forests with Urtica sondenii rare in the Arkhangelsk region and oxbow wet meadows with Scolochloa festucacea were identified.


2018 ◽  
pp. 107-130 ◽  
Author(s):  
T. V. Chernenkova ◽  
O. V. Morozova ◽  
N. G. Belyaeva ◽  
M. Yu. Puzachenko

This study aimed at an investigation of the structure, ecology and mapping of mixed communities with the participation of spruce, pine and broad-leave trees in one of the regions of broad-leave–coniferous zone. Despite the long history of the nature use of the study area, including forestry practices (Kurnayev, 1968; Rysin, Saveliyeva, 2007; Arkhipova, 2014; Belyaeva, Popov, 2016), the communities kept the main features of the indigenous forests of the broad-leave–coniferous zone ­— the tree species polydominance of the stands, the multilayer structure of communities and the high species diversity. In the course of field works in the southwestern part of the Moscow Region (2000–2016) 120 relevés were made. Spatial structure, species composition as well as cover values (%) of all vascular plants and bryophytes were recorded in each stand. The relevés were analysed following the ecology-phytocenotic classification approach and methods of multivariate statistical analysis that allowed correctly to differentiate communities according the broad-leave species participation. The accuracy of the classification based on the results of discriminant analysis was 95.8 %. Evaluation of the similarity of the selected units was carried out with the help of cluster analysis (Fig. 12). Clustering into groups is performed according to the activity index of species (A) (Malyshev, 1973) within the allocated syntaxon using Euclidean distance and Ward’s method. The classification results are corrected by DCA ordination in PC-ORD 5.0 (McCune, Mefford, 2006) (Fig. 1). Spatial mapping of forest cover was carried out on the basis of ground data, Landsat satellite images (Landsat 5 TM, 7 ETM +, 8 OLI_TIRS), digital elevation (DEM) and statistical methods (Puzachenko et al., 2014; Chernenkova et al., 2015) (Fig. 13 а, б). The obtained data and the developed classification refine the existing understanding of the phytocenotic structure of the forest cover of the broad-leave–coniferous zone. Three forest formation groups with different shares of broad-leave species in the canopy with seven groups of associations were described: a) coniferous forests with broad-leave species (small- and broad-herb spruce forests with oak and lime (1)); broad-herb spruce forests with oak and lime (2); small- and broad-herb pine forests with spruce, lime, oak and hazel (3); broad-herb pine forests with lime, oak and hazel (4)), b) broad-leave–coniferous forests (broad-herb spruce–broad-leave forests (5)), and c) broad-leave forests (broad-herb oak forests (6), broad-herb lime forests (7)). In the row of discussed syntaxa from 1 to 7 group, the change in the ratio of coniferous and broad-leave species of the tree layer (A) reflects re­gular decrease in the participation of spruce in the plant cover (from 66 to 6 %; Fig. 3 A1, A2) and an increase in oak and lime more than threefold (from 15 to 65 %; Fig. 4 a). Nemoral species predominate in the composition of ground layers, the cove­rage of which increases (from 40 to 80 %) in the range from 1 to 7 group, the coverage of the boreal group varies from 55 to 8 % (Fig. 11) while maintaining the presence of these species, even in nemoral lime and oak forests. In forests with equal share of broad-leave and coniferous trees (group 5) the nemoral species predominate in herb layer. In oak forests (group 6) the species of the nitro group are maximally represented, which is natural for oak forests occurring on rich soils, and also having abundant undergrowth of hazel. Practically in all studied groups the presence of both coniferous (in particular, spruce) and broad-leave trees in undergrowth (B) and ground layer (C) were present in equal proportions (Fig. 3). This does not confirm the unambiguity of the enrichment with nemoral species and increase in their cover in complex spruce and pine forests in connection with the climate warming in this region, but rather indicates on natural change of the main tree species in the cenopopulations. Further development of the stand and the formation of coni­ferous or broad-leave communities is conditioned by landscape. It is proved that the distribution of different types of communities is statistically significant due to the relief. According to the results of the analysis of remote information, the distribution areas of coniferous forests with broad-leave species, mixed and broad-leave forest areas for the study region are represented equally. The largest massifs of broad-leave–coniferous forests are located in the central and western parts of the study area, while in the eastern one the broad-leave forests predominate, that is a confirmation of the zonal ecotone (along the Pakhra River: Petrov, Kuzenkova, 1968) from broad-leave–coniferous forests to broad-leave forests.


2021 ◽  
Vol 13 (7) ◽  
pp. 1335
Author(s):  
Ronald Souza ◽  
Luciano Pezzi ◽  
Sebastiaan Swart ◽  
Fabrício Oliveira ◽  
Marcelo Santini

The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1631
Author(s):  
Artyom V. Gusarov

Contemporary trends in cultivated land and their influence on soil/gully erosion and river suspended sediment load were analyzed by various landscape zones within the most populated and agriculturally developed part of European Russia, covering 2,222,390 km2. Based on official statistics from the Russian Federation and the former Soviet Union, this study showed that after the collapse of the Soviet Union in 1991, there was a steady downward trend in cultivated land throughout the study region. From 1970–1987 to 2005–2017, the region lost about 39% of its croplands. Moreover, the most significant relative reduction in cultivated land was noted in the forest zone (south taiga, mixed and broadleaf forests) and the dry steppes and the semi-desert of the Caspian Lowland—about 53% and 65%, respectively. These territories are with climatically risky agriculture and less fertile soils. There was also a widespread reduction in agricultural machinery on croplands and livestock on pastures of the region. A decrease in soil/gully erosion rates over the past decades was also revealed based on state hydrological monitoring data on river suspended sediment load as one of the indicators of the temporal variability of erosion intensity in river basins and the published results of some field research in various parts of the studied landscape zones. The most significant reduction in the intensity of erosion and the load of river suspended sediment was found in European Russia’s forest-steppe zone. This was presumably due to a favorable combination of the above changes in land cover/use and climate change.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 462
Author(s):  
Enrico Ruzzier ◽  
Andrea Galli ◽  
Luciano Bani

Detecting and monitoring exotic and invasive Coleoptera is a complex activity to implement, and citizen science projects can provide significant contributions to such plans. Bottle traps are successfully used in wildlife surveys and can also be adapted for monitoring alien species; however, a sustainable, large scale trapping plan must take into account the collateral catches of native species and thus minimize its impact on local fauna. In the present paper, we tested the use of bottles baited with standard food products that can be purchased in every supermarket and immediately used (apple cider vinegar, red wine, and 80% ethyl alcohol) in capturing exotic and invasive beetles in the area surrounding Malpensa Airport (Italy). In particular, we reduced the exposition type of the traps in each sampling round to three days in order to minimize native species collecting. We found a significant effect of the environmental covariates (trap placement, temperature, humidity, and forest type) in affecting the efficiency in catching target beetles. Nearly all invasive Nitidulidae and Scarabaeidae known to be present in the area were captured in the traps, with apple cider vinegar usually being the most effective attractant, especially for the invasive Popillia japonica.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Liliana V. Belokopytova ◽  
Nivedita Mehrotra ◽  
Santosh K. Shah ◽  
...  

Improvement of dendrochronological crops yield reconstruction by separate application of earlywood and latewood width chronologies succeeded in rain-fed semiarid region. (1) Background: Tree-ring width chronologies have been successfully applied for crops yield reconstruction models. We propose application of separated earlywood and latewood width chronologies as possible predictors improving the fitness of reconstruction models. (2) Methods: The generalized yield series of main crops (spring wheat, spring barley, oats) were investigated in rain-fed and irrigated areas in semiarid steppes of South Siberia. Chronologies of earlywood, latewood, and total ring width of Siberian larch (Larix sibirica Ledeb.) growing in forest-steppe in the middle of the study area were tested as predictors of yield reconstruction models. (3) Results: In the rain-fed territory, separation of earlywood and latewood allowed increasing variation of yield explained by reconstruction model from 17.4 to 20.5%, whereas total climatic-driven component of variation was 41.5%. However, both tree-ring based models explained only 7.7% of yield variation in the irrigated territory (climate inclusion increased it to 34.8%). Low temperature sensitivity of larch growth was the main limitation of the model. A 240-year (1780–2019) history of crop failures and yield variation dynamics were estimated from the actual data and the best reconstruction model. (4) Conclusions: Presently in the study region, breeding of the environment-resistant crops varieties compensates the increase of temperature in the yield dynamics, preventing severe harvest losses. Tree-ring based reconstructions may help to understand and forecast response of the crops to the climatic variability, and also the probability of crop failures, particularly in the rain-fed territories.


1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.


Sign in / Sign up

Export Citation Format

Share Document