scholarly journals Areas of high energy efficiency of energy supply systems with cogeneration heat pump installations of small power and peak electric boilers

2017 ◽  
Vol V(148) (16) ◽  
pp. 85-89
Author(s):  
О. Р. Оstapenko
Buildings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 100 ◽  
Author(s):  
Elaheh Jalilzadehazhari ◽  
Georgios Pardalis ◽  
Amir Vadiee

The majority of the single-family houses in Sweden are affected by deteriorations in building envelopes as well as heating, ventilation and air conditioning systems. These dwellings are, therefore, in need of extensive renovation, which provides an excellent opportunity to install renewable energy supply systems to reduce the total energy consumption. The high investment costs of the renewable energy supply systems were previously distinguished as the main barrier in the installation of these systems in Sweden. House-owners should, therefore, compare the profitability of the energy supply systems and select the one, which will allow them to reduce their operational costs. This study analyses the profitability of a ground source heat pump, photovoltaic solar panels and an integrated ground source heat pump with a photovoltaic system, as three energy supply systems for a single-family house in Sweden. The profitability of the supply systems was analysed by calculating the payback period (PBP) and internal rate of return (IRR) for these systems. Three different energy prices, three different interest rates, and two different lifespans were considered when calculating the IRR and PBP. In addition, the profitability of the supply systems was analysed for four Swedish climate zones. The analyses of results show that the ground source heat pump system was the most profitable energy supply system since it provided a short PBP and high IRR in all climate zones when compared with the other energy supply systems. Additionally, results show that increasing the energy price improved the profitability of the supply systems in all climate zones.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 934
Author(s):  
Natasa Nord ◽  
Yiyu Ding ◽  
Ola Skrautvol ◽  
Stian Fossmo Eliassen

Owing to stricter building energy requirements, future buildings will be characterized by low base loads and occasional high peaks. However, future building areas will still contain existing and historical buildings with high energy demand. Meanwhile, there is a requirement that future building areas should obtain energy from renewable energy sources, while existing buildings need to be transited to renewables. Therefore, the aim of this study was to develop an approach for modelling energy pathways for future Norwegian residential building areas by analyzing different energy supply systems. Several calculation methods were combined: building simulation, energy supply technology simulation, heat demand aggregation, and data post-processing. The results showed that the energy pathways would be very dependent on CO2-factors for energy sources, and it is hard to predict accurate CO2-factors. An increasing housing stock development would slightly increase the CO2 emissions towards 2050, although the new buildings used much less energy and the existing buildings underwent renovation. A constant housing stock would yield a 22–27% reduction of CO2 emissions by 2050. This showed that implementing stricter building codes had a lower impact on the total CO2 emissions than CO2-factors and energy technologies. The focus should lie on energy supply systems.


2019 ◽  
Vol 2 (3) ◽  
pp. 164-169
Author(s):  
Mohammed Faza ◽  
Maulahikmah Galinium ◽  
Matthias Guenther

An energy supply system consists of a system of power plants and transmission anddistribution systems that supply electrical energy. The present project is limited to the modellingof the generation system. Its objective is the design and implementation of a web-basedapplication for simulating energy supply systems using the Laravel framework. The projectfocuses on six modules representing geothermal energy, solar energy, biopower, hydropower,storage, and fossil-based energy that are allocated to satisfy a given power demand. It isexecuted as a time series modelling for an exemplary year with hourly resolution. Thedevelopment of the software is divided into four steps, which are the definition of the userrequirements, the system design (activity, use case, system architecture, and ERD), the softwaredevelopment, and the software testing (unit testing, functionality testing, validity testing, anduser acceptance testing). The software is successfully implemented. All the features of thesoftware work as intended. Also, the software goes through validity testing using three differentinput data, to make sure the software is accurate. The result of the testing is 100% accuracy withrespect to the underlying model that was implemented in an excel calculation.


2018 ◽  
Vol 2 (42) ◽  
pp. 61-67
Author(s):  
D. Derevianko ◽  
◽  
O. Yarmoliuk ◽  
O. Bespalyi ◽  
◽  
...  

Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


Sign in / Sign up

Export Citation Format

Share Document