scholarly journals Window-based UFMC technique for 5G systems

2021 ◽  
Vol 9 (1) ◽  
pp. 11-21
Author(s):  
Safa N. Idi ◽  
Mahmood A. Mahmood ◽  
Hasan F. Khazaal

In this paper, we investigate the universal filtered multi-carrier system (UFMC) for 5G and subsequent connections with the aid of the MATLAB package. It can be considered that the UFMC technology provides an advantage against inter-symbol interference (ISI) as well as inter-carrier interference (ICI) and low latency. The proposed system is simulated and analyzed in terms of error rates, the complementary cumulative distribution function (CCDF), peak-to-average power ratio (PAPR), error vector magnitude (EVM). In more specific, this paper shows a comparison of two UFMC systems, one with Dolph-Chebyshev filter and the other with Kaiser filter. Obtained results indicate that the performance of the UFMC with Kaiser is quite better than UFMC with Dolph-Chebyshev. Kaiser filter is employed in place of UFMC-based Dolph -Chebyshev to achieve better spectral energy and also to prevent leakage of the spectra. The obtained results also show the enhancement in the EVM and the power spectral density (PSD) criteria, e.g., Kaiser filter enhances the EVM by almost 0.2%. Furthermore, in contrast to applying the Dolph-Chebyshev window in UFMC, the Kaiser window can help in the decrease of PAPR for UFMC.

2014 ◽  
Vol 596 ◽  
pp. 794-798
Author(s):  
Rui Zhang ◽  
Zhi Bin Zeng

The main disadvantage of multicarrier system is the high peak-to-average power ratio which can easily result in significant cut-the-top distortion of power amplifier. However, the power efficiency of power amplifier will be reduced by power back-off technology. Therefore, crest factor reduction is important in reducing the peak-to-average power ratio of multicarrier system and improving the efficiency of power amplifier. The peak-to-average power ratio can be effectively reduced with small distortion by the algorithm of crest factor reduction based on peak cancellation. And the performance of peak-to-average power ratio is better with the same error vector magnitude.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1404
Author(s):  
Mohammed I. Al-Rayif ◽  
Hussein E. Seleem ◽  
Amr M. Ragheb ◽  
Saleh A. Alshebeili

Universal filtered multi-carrier (UFMC) is a potential multi-carrier system for future cellular networks. UFMC provides low latency, frequency offset robustness, and reduced out-of-band (OOB) emission that results in better spectral efficiency. However, UFMC suffers from the problem of high peak-to-average power ratio (PAPR), which might impact the function of high power amplifiers causing a nonlinear distortion. We propose a comparative probabilistic PAPR reduction technique, called the decomposed selective mapping approach, to alleviate PAPR in UFMC systems. The concept of this proposal depends on decomposing the complex symbol into real and imaginary parts, and then converting each part to a number of different phase vectors prior to the inverse fast Fourier transform (IFFT) operation. The IFFT copy, which introduces the lowest PAPR, is considered for transmission. Results obtained using theoretical analysis and simulations show that the proposed approach can significantly enhance the performance of the UFMC system in terms of PAPR reduction. Besides, it maintains the OOB emission with candidate bit error rate and error vector magnitude performances.


Author(s):  
Younes Aimer ◽  
Boubakar Seddik Bouazza ◽  
Smail Bachir ◽  
Claude Duvanaud

In OFDM systems, peak-to-average power ratio (PAPR) reduction of the signal is one of the main challenges that need to be overcome in order to use the transmitter in an efficient manner. As one of attractive techniques, interleaving can be used in PAPR reduction for multicarrier signals without spectrum distortion. In this paper, the authors propose to extend the possibilities of interleaving to improve PAPR reduction, to use a new coding of interleaver keys at the transmitter and a robust decoding procedure at the receiver. In order not to degrade the data rate, the use of null subcarriers to transmit side information to the receiver is proposed and evaluated. Simulation results in the context of the WLAN 802.11a standard in the presence of a nonlinear power amplifier model with memory, show a reduction of PAPR of approximately 5.2 dB, and an improvement of bit error rate and error vector magnitude of about 2 decades and 4% respectively, while respecting the spectral mask specification.


Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1410
Author(s):  
Mohamed Mounir ◽  
Mohamed B. El_Mashade ◽  
Salah Berra ◽  
Gurjot Singh Gaba ◽  
Mehedi Masud

Several high-speed wireless systems use Orthogonal Frequency Division Multiplexing (OFDM) due to its advantages. 5G has adopted OFDM and is expected to be considered beyond 5G (B5G). Meanwhile, OFDM has a high Peak-to-Average Power Ratio (PAPR) problem. Hybridization between two PAPR reduction techniques gains the two techniques’ advantages. Hybrid precoding-companding techniques are attractive as they require small computational complexity to achieve high PAPR reduction gain. Many precoding-companding techniques were introduced to increasing the PAPR reduction gain. However, reducing Bit Error Rate (BER) and out-of-band (OOB) radiation are more significant than increasing PAPR reduction gain. This paper proposes a new precoding-companding technique to better reduce the BER and OOB radiation than previous precoding-companding techniques. Results showed that the proposed technique outperforms all previous precoding-companding techniques in BER enhancement and OOB radiation reduction. The proposed technique reduces the Error Vector Magnitude (EVM) by 15 dB compared with 10 dB for the best previous technique. Additionally, the proposed technique increases high power amplifier efficiency (HPA) by 11.4%, while the best previous technique increased HPA efficiency by 9.8%. Moreover, our proposal achieves PAPR reduction gain better than the most known powerful PAPR reduction technique with a 99% reduction in required computational complexity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhou ◽  
Kun Zhang ◽  
Wenbiao Zhou ◽  
Yanjun Zhang ◽  
Dake Liu

The carrier-frequency (CF) and intermediate-frequency (IF) pulse-width modulators (PWMs) based on delay lines are proposed, where baseband signals are conveyed by both positions and pulse widths or densities of the carrier clock. By combining IF-PWM and precorrected CF-PWM, a fully digital transmitter with unit-delay autocalibration is implemented in 180 nm CMOS for high reconfiguration. The proposed architecture achieves wide CF range of 2 M–1 GHz, high power efficiency of 70%, and low error vector magnitude (EVM) of 3%, with spectrum purity of 20 dB optimized in comparison to the existing designs.


Sign in / Sign up

Export Citation Format

Share Document