scholarly journals Wind farm service vessels concept design. Part 1 – Mathematical model

Pomorstvo ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 111-118
Author(s):  
Oleksandr V. Bondarenko

This paper describes the process of a conceptual design of the Wind farm service vessel. The optimization problem of the choice of principal particulars of the WFSV is formulated. For her decision, a genetic algorithm is used. A minimum of costs on repair and maintenance of wind farm is chosen as the objective function. The methodology of the optimization process such as objective function, design variables and used constraints is described. Furthermore, a mathematical model considering dimensions, powering, mass, stability, sea keeping and cost calculation is developed. Methodology of the estimation of economic efficiency, basis of what is made by the methods of statistical design, theory of probability and theory of reliability, is worked out. Software is worked out, giving an opportunity to visualize the process of functioning of the WFSV and wind farm. The methodology may be used in the conceptual design stages for selecting the main dimension of the WFSV.

2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2020 ◽  
Vol 62 (7) ◽  
pp. 672-677 ◽  
Author(s):  
E. İ. Albak ◽  
E. Solmaz ◽  
F. Öztürk

Abstract Twist beam suspension systems are usually used in middle segment vehicles due to certain advantages. Researchers have presented many studies on both lightweight and functional twist beam design. In this paper, an optimization study is presented for enhancing the conceptual design of the twist beam by defining design variables along the twist beam as subject to vehicle handling conditions.Toe and camber angles are essential parameters that determine vehicle behavior during maneuvering. In this study, opposite wheel travel analysis is performed to represent maneuvering behavior. Therefore, while the optimization study is presented in the form of weight reduction, it is aimed to keep the toe and camber angles at certain intervals. Ant lion optimizer and mothflame optimization methods, which are population-based optimization methods, are used in the optimization phase to evaluate the performance of the new algorithms as compared with genetic algorithm in terms of robustness and correctness in the case of twist beam design. A two stage approach is introduced for presenting the optimization model and analysis. In the first stage, design space is created via the Latin hypercube method; the mathematical model is obtained via the least squares regression method. Finally, the mathematical model is solved to enhance twist beam conceptual design using recently developed population based optimization algorithms.


2013 ◽  
Vol 273 ◽  
pp. 198-202
Author(s):  
Yu Xia Wang

In a given power P, number of teeth than u, input speed and other technical conditions and requirements, find out a set of used a economic and technical indexes reach the optimal design parameters, realize the optimization design of the reducer, This paper determined unipolar standard spur gear reducer design optimization of the design variables, and then determine the objective function, determining constraint function, so as to establish the mathematical model.


2014 ◽  
Vol 621 ◽  
pp. 227-232
Author(s):  
Quan Ying Sun ◽  
Yi Li Wang ◽  
Xiu Li Meng ◽  
Xiao Dong Yu

This article, to optimize the transmission mechanism of tightening machine, select the involute planetary gear with two teeth differences a research object, determine the design variables about modification coefficient, modulus and tooth thickness, based on the target of having the minimum volume, a mathematical model of optimization was established, the optimal solution of the objective function is obtained by using the SQP method on fmincon function of optimization toolbox of Matlab. The results showed, the volume of pinion decreased 15% after optimizated, the volume of the corresponding gear will also greatly reduced, achieved the optimization goal.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


1999 ◽  
Vol 122 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Hiromu Hashimoto ◽  
Yasuhisa Hattori

The aim of this paper is to develop a general methodology for the optimum design of magnetic head sliders in improving the spacing characteristics between a slider and disk surface under static and dynamic operating conditions of hard disk drives and to present an application of the methodology to the IBM 3380-type slider design. To generate the optimal design variables, the objective function is defined as the weighted sum of the minimum spacing, the maximum difference in the spacing due to variation of the radial location of the head, and the maximum amplitude ratio of the slider motion. Slider rail width, taper length, taper angle, suspension position, and preload are selected as the design variables. Before the optimization of the head, the effects of these five design variables on the objective function are examined by a parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique, combining the direct search method and successive quadratic programming. From the obtained results, the effectiveness of optimum design on the spacing characteristics of magnetic heads is clarified. [S0742-4787(00)03701-2]


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Bradley Howard ◽  
Aimee Cloutier ◽  
Jingzhou (James) Yang

An understanding of human seated posture is important across many fields of scientific research. Certain demographics, such as pregnant women, have special postural limitations that need to be considered. Physics-based posture prediction is a tool in which seated postures can be quickly and thoroughly analyzed, as long the predicted postures are realistic. This paper proposes and validates an optimization formulation to predict seated posture for pregnant women considering ground and seat pan contacts. For the optimization formulation, the design variables are joint angles (posture); the cost function is dependent on joint torques. Constraints include joint limits, joint torque limits, the distances from the end-effectors to target points, and self-collision avoidance constraints. Three different joint torque cost functions have been investigated to account for the special postural characteristics of pregnant women and consider the support reaction forces (SRFs) associated with seated posture. Postures are predicted for three different reaching tasks in common reaching directions using each of the objective function formulations. The predicted postures are validated against experimental postures obtained using motion capture. A linear regression analysis was used to evaluate the validity of the predicted postures and was the criteria for comparison between the different objective functions. A 56 degree of freedom model was used for the posture prediction. Use of the objective function minimizing the maximum normalized joint torque provided an R2 value of 0.828, proving superior to either of two alternative functions.


Sign in / Sign up

Export Citation Format

Share Document