scholarly journals Resolving Dimensions: A Comparison Between ERT Imaging and 3D Modelling of the Barge Crowie, South Australia

2021 ◽  
Author(s):  
Kleanthis Simyrdanis ◽  
Marian Bailey ◽  
Ian Moffat ◽  
Amy Roberts ◽  
Wendy Van Duivenvoorde ◽  
...  

Three-dimensional (3D) modelling is becoming a ubiquitous technology for the interpretation of cultural heritage objects. However most 3D models are based on geomatic data such as surveying, laser scanning or photogrammetry and therefore rely on the subject of the study being visible. This chapter presents the case study of Crowie, a submerged and partially buried barge wrecked near the town of Morgan in South Australia. Crowie was reconstructed using two alternative approaches; one based on a combination of historic photographs and computer graphics and the second based on geophysical data from electrical resistivity tomography (ERT). ERT has been rarely used for maritime archaeology despite providing 3D representation under challenging survey conditions, such as in shallow and turbid water. ERT was particularly successful on Crowie for mapping the external metal cladding, which was recognisable based on very low resistivity values. An alternative 3D model was created using historic photographs and dimensions for Crowie in combination with information from acoustic geophysical surveys. The excellent correspondence between these models demonstrates the efficacy of ERT in shallow maritime archaeology contexts.

2010 ◽  
Vol 1 (2) ◽  
pp. 123 ◽  
Author(s):  
José Luis Lerma García ◽  
Miriam Cabrelles López ◽  
Santiago Navarro Tarín ◽  
Sergio Galcerá Ustero

<p>The three-dimensional (3D) documentation by means of laser scanning and photogrammetry eases exhaustive recording, the right lecture of cultural heritage objects and its analysis in order to, on the one hand, adopt appropriate decisions and interventions, on the other hand, move forward the generation of virtual animated replicas of great value and smooth multimedia dissemination. The present paper tackles the different stages of graphic documentation and visualization undertaken in the Parpalló Cave (Cova del Parpalló), Gandia, Valencia. Besides traditional surveying documentation that is based on planimetric and altimetric maps, this paper presents the plotting and animated visualization of the Palaeolithic set not only making use of lights and shadows but also from photorealistic textured 3D models.</p>


Author(s):  
M. Marčiš ◽  
P. Barták ◽  
D. Valaška ◽  
M. Fraštia ◽  
O. Trhan

In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.


Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170048 ◽  
Author(s):  
M. I. Disney ◽  
M. Boni Vicari ◽  
A. Burt ◽  
K. Calders ◽  
S. L. Lewis ◽  
...  

Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods.


Author(s):  
Agnieszka Chmurzynska ◽  
Karolina Hejbudzka ◽  
Andrzej Dumalski

During the last years the softwares and applications that can produce 3D models using low-cost methods have become very popular. What is more, they can be successfully competitive with the classical methods. The most wellknown and applied technology used to create 3D models has been laser scanning so far. However it is still expensive because of the price of the device and software. That is why the universality and accessibility of this method is very limited. Hence, the new low cost methods of obtaining the data needed to generate 3D models appeare on the market and creating 3D models have become much easier and accessible to a wider group of people. Because of their advantages they can be competitive with the laser scanning. One of the methods uses digital photos to create 3D models. Available software allows us to create a model and object geometry. Also very popular in the gaming environment device – Kinect Sensor can be successfully used as a different method to create 3D models. This article presents basic issues of 3D modelling and application of various devices, which are commonly used in our life and they can be used to generate a 3D model as well. Their results are compared with the model derived from the laser scanning. The acquired results with graphic presentations and possible ways of applications are also presented in this paper.


Author(s):  
Luis Marques ◽  
Josep Roca

The creation of 3D models of urban elements is extremely relevant for urbanists constituting digital archives and being especially useful for enriching maps and databases or reconstructing and analyzing objects/areas through time, building/recreating scenarios and implementing intuitive methods of interaction. The widespread data available online offer new opportunities to generate realistic 3D models without the need to go physically to the place. This chapter aims to demonstrate the potential 3D modeling and visualization/interaction of urban elements in the city for multiple purposes, and it is organized in four main topics: The first deals with the theoretical framework regarding the bases of the human perception of the spatial environment and the importance of 3D modelling. The second and third deal with technical procedures on terrestrial/aerial data acquisition and demonstrate alternatively data gathered online to generate 3D models for the visualization of urban elements of the city, and the fourth introduces 3D model visualization within an augmented reality environment.


2017 ◽  
Vol 62 (No. 4) ◽  
pp. 204-210 ◽  
Author(s):  
S. Ozkadif ◽  
E. Eken ◽  
MO Dayan ◽  
K. Besoluk

This study was undertaken to obtain and analyse, on the basis of sex, three-dimensional (3D) reconstructions obtained by a 3D computer program from two-dimensional (2D) vertebral column sections taken by multidetector computed tomography (MDCT) images, in the chinchilla. A total of 16 adult chinchillas (Chinchilla lanigera) of both sexes were used. The MDCT images were taken under general anaesthesia, and were then transferred to a personal computer on which 3D reconstructions were carried out using a 3D modelling program (Mimics 13.1). The volume, surface area and vertebral body length of each vertebra (except caudal region) forming the vertebral column were measured from the 3D models created. The ratios (in percentage) of the measurements of each vertebra (except the sacral ones) forming the vertebral column region (cervical part, thoracic part, lumbar part) were determined for statistical analysis. We detected significant differences (P &lt; 0.05) between sexes in all vertebrae forming the vertebral column of the chinchilla with respect to volume, surface area and vertebral body length, except for C6 and L1. This study is the first to carry out 3D reconstructions of data obtained from CT images in the chinchilla and the obtained results contribute to a more detailed understanding of the anatomy of this species. Our strategy may also be useful for the design of experiments exploring the vertebral column in domestic mammals and humans.


2012 ◽  
Vol 594-597 ◽  
pp. 2398-2401
Author(s):  
Dong Ling Ma ◽  
Jian Cui ◽  
Fei Cai

This paper provides a scheme to construct three dimensional (3D) model fast using laser scanning data. In the approach, firstly, laser point cloud are scanned from different scan positions and the point cloud coming from neighbor scan stations are spliced automatically to combine a uniform point cloud model, and then feature lines are extracted through the point cloud, and the framework of the building are extracted to generate 3D models. At last, a conclusion can be drawn that 3D visualization model can be generated quickly using 3D laser scanning technology. The experiment result shows that it will bring the application model and technical advantage which traditional mapping way can not have.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


Sign in / Sign up

Export Citation Format

Share Document