scholarly journals Data Comets: Designing a Visualization Tool for Analyzing Autonomous Aerial Vehicle Logs with Grounded Evaluation

2020 ◽  
Author(s):  
David Saffo ◽  
Aristotelis Leventidis ◽  
Twinkle Jain ◽  
Michelle Borkin ◽  
Cody Dunne

Autonomous unmanned aerial vehicles are complex systems of hardware, software, and human input. Understanding this complexity is key to their development and operation. Information visualizations already exist for exploring flight logs but comprehensive analyses currently require several disparate and custom tools. This design study helps address the pain points faced by autonomous unmanned aerial vehicle developers and operators. We contribute: a spiral development process model for grounded evaluation visualization development focused on progressively broadening target user involvement and refining user goals; a demonstration of the model as part of developing a deployed and adopted visualization system; a data and task abstraction for developers and operators performing post-flight analysis of autonomous unmanned aerial vehicle logs; the design and implementation of DATA COMETS, an open-source and web-based interactive visualization tool for post-flight log analysis incorporating temporal, geospatial, and multivariate data; and the results of a summative evaluation of the visualization system and our abstractions based on in-the-wild usage. A free copy of this paper and source code are available at osf.io/h4p7g

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1964
Author(s):  
Yang Li ◽  
Xin Ni ◽  
Jiaming Liu ◽  
Rui Wang ◽  
Jingnan Ma ◽  
...  

To solve the battery power supply problem with wireless sensor networks (WSNs), a novel bidirectional wireless charging system is proposed, in which an unmanned aerial vehicle (UAV) can fly to the WSNs to charge sensors through high-frequency wireless power transfer (WPT) and also obtain energy for its own battery in the same way. To improve the performance of the UAV bidirectional wireless charging system, a lightweight design is adopted to increase its loading capacity and working time. Moreover, the radii and the numbers of turns and pitches of coupling coils were designed and optimized on the basis of simulations and experiments. Experimental results show that the weight of optimized UAV coil was reduced by 34.45%. The power transfer efficiency (PTE) of the UAV coil to sensor coil increased from 60.2% to 74.4% at a transmission distance of 15 cm, while that of the ground transmitting coil to UAV coil increased from 65.2% to 90.1% at 10 cm.


2021 ◽  
Vol 19 (3) ◽  
pp. 4-11
Author(s):  
D. V. Kudryavtsev ◽  
◽  
A. G. Magdin ◽  
A. D. Pripadchev ◽  
A. A. Gorbunov

The paper considers a new method of processing all the necessary surfaces of crops through the use of an unmanned aerial vehicle (UAV). At the moment, the processing of all surfaces of tall shrubs and individual sections of trees with spot spraying of a chemical liquid on a large agro-industrial scale is not possible due to the imperfection of modern methods of processing agricultural crops. The proposed agricultural unmanned aerial vehicle, due to spot cultivation of crops, is able to increase yields and bring additional profits to agricultural farmers. Ease of operation is the most important advantage of the proposed UAV, for the processing of crops using this UAV does not require special skills, as, for example, when operating agricultural aircraft and ground equipment. Depending on the type of crops and the characteristics of the local landscape, the proposed UAV for agricultural purposes will be spraying in the vertical direction (top to bottom) or at a given angle by changing the position of the lever and its further fixation on the boom, as well as processing in the horizontal plane. The degree of direct human participation in the control and management of the UAV is determined based on the choice of the mode of differential application of fertilizers and pesticides for a given area - stationary or dynamic. In an idealized system, a programmed electronic computer (ECM) in the form of a computer, capable of adjusting the flight and the introduction of chemical reagents in a constant mode, will assume the main role in controlling the movement by analyzing the readings of the instrument sensors. All this can be implemented in practice at the proper level with appropriate funding, and the results of such a project in the future will open a new stage in the sectoral processing of crops and pole crops.


2021 ◽  
Vol 3 (1) ◽  
pp. 106-113
Author(s):  
V Chyhin ◽  

The possibility of creating a computer control system for an unmanned aerial vehicle using remote cloud computing according to predefined scenarios from the user's desktop is investigated. For this, an experimental setup was created, which includes a quadcopter, a personal computer with the Windows operating system, an on-board computer Raspberry-3 with the Linux operating system, a Pi Camera V2 camcorder, and a Pixhawk autopilot. To model the control and transmission of video images the own control programs and photo pursuit on a computer Raspberry-3 in Python are recorded. Based on the obtained results, a model of unmanned aerial vehicle control from the desktop of the user's personal computer via the on-board computer without the use of a standard control panel and operator is proposed.


2020 ◽  
Vol 12 (12) ◽  
pp. 1972 ◽  
Author(s):  
Urška Drešček ◽  
Mojca Kosmatin Fras ◽  
Jernej Tekavec ◽  
Anka Lisec

This paper provides the innovative approach of using a spatial extract, transform, load (ETL) solution for 3D building modelling, based on an unmanned aerial vehicle (UAV) photogrammetric point cloud. The main objective of the paper is to present the holistic workflow for 3D building modelling, emphasising the benefits of using spatial ETL solutions for this purpose. Namely, despite the increasing demands for 3D city models and their geospatial applications, the generation of 3D city models is still challenging in the geospatial domain. Advanced geospatial technologies provide various possibilities for the mass acquisition of geospatial data that is further used for 3D city modelling, but there is a huge difference in the cost and quality of input data. While aerial photogrammetry and airborne laser scanning involve high costs, UAV photogrammetry has brought new opportunities, including for small and medium-sized companies, by providing a more flexible and low-cost source of spatial data for 3D modelling. In our data-driven approach, we use a spatial ETL solution to reconstruct a 3D building model from a dense image matching point cloud which was obtained beforehand from UAV imagery. The results are 3D building models in a semantic vector format consistent with the OGC CityGML standard, Level of Detail 2 (LOD2). The approach has been tested on selected buildings in a simple semi-urban area. We conclude that spatial ETL solutions can be efficiently used for 3D building modelling from UAV data, where the data process model developed allows the developer to easily control and manipulate each processing step.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document