scholarly journals Development and external validation of a deep learning-based computed tomography classification system for COVID-19

2021 ◽  
Author(s):  
Yuki KATAOKA

Rationale: Currently available machine learning models for diagnosing COVID-19 based on computed tomography (CT) images are limited due to concerns regarding methodological flaws or underlying biases in the evaluation process. Objectives: We aimed to develop and externally validate a novel machine learning model that can classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR).Methods: We used 3128 images from a wide variety of two-gate data sources for the development and ablation study of the machine learning model. A total of 633 COVID-19 cases and 2295 non-COVID-19 cases were included in the study. We randomly divided cases into a development set and ablation set at a ratio of 8:2. For the ablation study, we used another dataset including 150 cases of interstitial pneumonia among non-COVID-19 images. For external validation, we used 893 images from 740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was RT-PCR.Result: In ablation study, using interstitial pneumonia images, the specificity of the model were 0.986 for usual interstitial pneumonia pattern, 0.820 for non-specific interstitial pneumonia pattern, 0.400 for organizing pneumonia pattern. In the external validation study, the sensitivity and specificity of the model were 0.869 and 0.432, respectively, at the low-level cutoff, and 0.724 and 0.721, respectively, at the high-level cutoff.Conclusions: Our machine learning model exhibited a high sensitivity in external validation datasets and may assist physicians to rule out COVID-19 diagnosis in a timely manner. Further studies are warranted to improve model specificity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bongjin Lee ◽  
Kyunghoon Kim ◽  
Hyejin Hwang ◽  
You Sun Kim ◽  
Eun Hee Chung ◽  
...  

AbstractThe aim of this study was to develop a predictive model of pediatric mortality in the early stages of intensive care unit (ICU) admission using machine learning. Patients less than 18 years old who were admitted to ICUs at four tertiary referral hospitals were enrolled. Three hospitals were designated as the derivation cohort for machine learning model development and internal validation, and the other hospital was designated as the validation cohort for external validation. We developed a random forest (RF) model that predicts pediatric mortality within 72 h of ICU admission, evaluated its performance, and compared it with the Pediatric Index of Mortality 3 (PIM 3). The area under the receiver operating characteristic curve (AUROC) of RF model was 0.942 (95% confidence interval [CI] = 0.912–0.972) in the derivation cohort and 0.906 (95% CI = 0.900–0.912) in the validation cohort. In contrast, the AUROC of PIM 3 was 0.892 (95% CI = 0.878–0.906) in the derivation cohort and 0.845 (95% CI = 0.817–0.873) in the validation cohort. The RF model in our study showed improved predictive performance in terms of both internal and external validation and was superior even when compared to PIM 3.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2102
Author(s):  
Eyal Klang ◽  
Robert Freeman ◽  
Matthew A. Levin ◽  
Shelly Soffer ◽  
Yiftach Barash ◽  
...  

Background & Aims: We aimed at identifying specific emergency department (ED) risk factors for developing complicated acute diverticulitis (AD) and evaluate a machine learning model (ML) for predicting complicated AD. Methods: We analyzed data retrieved from unselected consecutive large bowel AD patients from five hospitals from the Mount Sinai health system, NY. The study time frame was from January 2011 through March 2021. Data were used to train and evaluate a gradient-boosting machine learning model to identify patients with complicated diverticulitis, defined as a need for invasive intervention or in-hospital mortality. The model was trained and evaluated on data from four hospitals and externally validated on held-out data from the fifth hospital. Results: The final cohort included 4997 AD visits. Of them, 129 (2.9%) visits had complicated diverticulitis. Patients with complicated diverticulitis were more likely to be men, black, and arrive by ambulance. Regarding laboratory values, patients with complicated diverticulitis had higher levels of absolute neutrophils (AUC 0.73), higher white blood cells (AUC 0.70), platelet count (AUC 0.68) and lactate (AUC 0.61), and lower levels of albumin (AUC 0.69), chloride (AUC 0.64), and sodium (AUC 0.61). In the external validation cohort, the ML model showed AUC 0.85 (95% CI 0.78–0.91) for predicting complicated diverticulitis. For Youden’s index, the model showed a sensitivity of 88% with a false positive rate of 1:3.6. Conclusions: A ML model trained on clinical measures provides a proof of concept performance in predicting complications in patients presenting to the ED with AD. Clinically, it implies that a ML model may classify low-risk patients to be discharged from the ED for further treatment under an ambulatory setting.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Lingling Ding ◽  
Zixiao Li ◽  
Yongjun Wang

Objective: We aimed to develop and validate a machine learning-based prediction model that could assess the risk of stroke-associated pneumonia (SAP) for individual patients with acute ischemic stroke (AIS). Methods: A machine-learning model incorporating A 2 DS 2 scores and clinical features (AN-ADCS 2 ) was developed to predict the risk of SAP in patients with AIS. Two independent datasets were used for model derivation and external validation. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were estimated. The further analysis evaluated thresholds from the training set that identified patients as low-risk, intermediate-risk and high-risk, and performance at these thresholds was compared in the external validation set. Results: The AN-ADCS 2 model achieved favorable performance with a high AUC of 0.892 (95% confidence interval [CI] 0.885-0.898) in the test set and similar performance in the external validation set (AUC 0.813 [95% CI 0.812-0.814]). The AN-ADCS 2 threshold identifying low-risk was 0.03, with a NPV of 97.6% (97.2-97.9%) and sensitivity of 93.5% (92.5-94.5%). The AN-ADCS 2 threshold identifying high-risk was 0.65, with a PPV of 94.7% (93.9-95.6%) and specificity of 99.5% (99.5-99.6%). The AN-ADCS 2 model performed better than the A 2 DS 2 score (AUC 0.739, 95%CI [0.720-0.754]). Having a high risk of SAP classified by the AN-ADCS 2 was associated with unfavorable outcomes of mortality and in-hospital stroke recurrence. Conclusions: Using machine learning, the AN-ADCS 2 model provides an individualized risk prediction of SAP, which can be used as an indicator of clinical prognosis for patients with AIS.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-324060
Author(s):  
Raghav Sundar ◽  
Nesaretnam Barr Kumarakulasinghe ◽  
Yiong Huak Chan ◽  
Kazuhiro Yoshida ◽  
Takaki Yoshikawa ◽  
...  

ObjectiveTo date, there are no predictive biomarkers to guide selection of patients with gastric cancer (GC) who benefit from paclitaxel. Stomach cancer Adjuvant Multi-Institutional group Trial (SAMIT) was a 2×2 factorial randomised phase III study in which patients with GC were randomised to Pac-S-1 (paclitaxel +S-1), Pac-UFT (paclitaxel +UFT), S-1 alone or UFT alone after curative surgery.DesignThe primary objective of this study was to identify a gene signature that predicts survival benefit from paclitaxel chemotherapy in GC patients. SAMIT GC samples were profiled using a customised 476 gene NanoString panel. A random forest machine-learning model was applied on the NanoString profiles to develop a gene signature. An independent cohort of metastatic patients with GC treated with paclitaxel and ramucirumab (Pac-Ram) served as an external validation cohort.ResultsFrom the SAMIT trial 499 samples were analysed in this study. From the Pac-S-1 training cohort, the random forest model generated a 19-gene signature assigning patients to two groups: Pac-Sensitive and Pac-Resistant. In the Pac-UFT validation cohort, Pac-Sensitive patients exhibited a significant improvement in disease free survival (DFS): 3-year DFS 66% vs 40% (HR 0.44, p=0.0029). There was no survival difference between Pac-Sensitive and Pac-Resistant in the UFT or S-1 alone arms, test of interaction p<0.001. In the external Pac-Ram validation cohort, the signature predicted benefit for Pac-Sensitive (median PFS 147 days vs 112 days, HR 0.48, p=0.022).ConclusionUsing machine-learning techniques on one of the largest GC trials (SAMIT), we identify a gene signature representing the first predictive biomarker for paclitaxel benefit.Trial registration numberUMIN Clinical Trials Registry: C000000082 (SAMIT); ClinicalTrials.gov identifier, 02628951 (South Korean trial)


Author(s):  
Chungsoo Kim ◽  
Seng Chan You ◽  
Jenna M Reps ◽  
Jae Youn Cheong ◽  
Rae Woong Park

Abstract Objective Cause of death is used as an important outcome of clinical research; however, access to cause-of-death data is limited. This study aimed to develop and validate a machine-learning model that predicts the cause of death from the patient’s last medical checkup. Materials and Methods To classify the mortality status and each individual cause of death, we used a stacking ensemble method. The prediction outcomes were all-cause mortality, 8 leading causes of death in South Korea, and other causes. The clinical data of study populations were extracted from the national claims (n = 174 747) and electronic health records (n = 729 065) and were used for model development and external validation. Moreover, we imputed the cause of death from the data of 3 US claims databases (n = 994 518, 995 372, and 407 604, respectively). All databases were formatted to the Observational Medical Outcomes Partnership Common Data Model. Results The generalized area under the receiver operating characteristic curve (AUROC) of the model predicting the cause of death within 60 days was 0.9511. Moreover, the AUROC of the external validation was 0.8887. Among the causes of death imputed in the Medicare Supplemental database, 11.32% of deaths were due to malignant neoplastic disease. Discussion This study showed the potential of machine-learning models as a new alternative to address the lack of access to cause-of-death data. All processes were disclosed to maintain transparency, and the model was easily applicable to other institutions. Conclusion A machine-learning model with competent performance was developed to predict cause of death.


2020 ◽  
Author(s):  
Yingjian Liang ◽  
Chengrui Zhu ◽  
Cong Tian ◽  
Qizhong Lin ◽  
Zhiliang Li ◽  
...  

Abstract Background: This study was performed to develop and validate machine learning models for the early detection of ventilator-associated pneumonia (VAP) in patients 24 h before the diagnosis that enables VAP patients to receive early intervention and reduces the occurrence of complications.Patients and Methods: This study was based on the MIMIC-III dataset, which was a retrospective cohort. The random forest algorithm was applied to construct a base classifier, and the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity and specificity of the prediction model were evaluated. Meanwhile, a Clinical Pulmonary Infection Score (CPIS)-based model (threshold value≥3) using the same training and test data set was used as the control model.Results: A total of 38,515 ventilation durations occurred in 61,532 ICU admissions. VAP occurred in 212 of these durations. We incorporated 42 VAP risk factors on admission and routinely measured vital characteristics and laboratory results. Five-fold cross-validation was performed to evaluate the model performance, and the model achieved an AUC of 84.4%±1.7% on validation, 74.3%±2.5% sensitivity and 70.7.6%±1.2% specificity 24 h before the gold standard time (at least 48 h after ventilation). Our VAP machine learning model improved the AUC of the CPIS-based model by almost 25%, and the sensitivity and specificity were also improved by almost 14% and 15%, respectively.Conclusions: We developed and internally validated an automated model of VAP prediction in the MIMIC-III cohort. The VAP prediction model achieved high performance for AUC, sensitivity and specificity. and its performance was superior to that of the CPIS model. External validation and prospective interventional or outcome studies using this prediction model are envisioned as future work.


Sign in / Sign up

Export Citation Format

Share Document